python-to-cpp-code-optimizer / placeholder_python_code.py
MightyOctopus's picture
Create placeholder_python_code.py
76c3d25 verified
pi_1 = """
import time
def calculate(iterations, p1, p2):
result = 1.0
for i in range(1, iterations+1):
j = i * p1 - p2
result -= (1/j)
j = i * p1 + p2
result += (1/j)
return result
### USE Or MODIFY THIS CODE BELOW IF YOU NEED CODE EXECUTION CHECK -- EXAMPLE BELOW:
start_time = time.time()
final_result = calculate(100_000_000, 4, 1) * 4
end_time = time.time()
print(f"Result: {final_result:.12f}")
print(f"Execution Time: {(end_time - start_time):.6f} seconds")
"""
pi_2 = """
import time
def lcg(seed, a=1664525, c=1013904223, m=2**32):
value = seed
while True:
value = (a * value + c) % m
yield value
def max_subarray_sum(n, seed, min_val, max_val):
'''Generate n pseudo-random numbers using LCG and find max subarray sum.'''
lcg_gen = lcg(seed)
random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]
# Kadane’s Algorithm
max_sum = float('-inf')
current_sum = 0
for x in random_numbers:
current_sum = max(x, current_sum + x)
max_sum = max(max_sum, current_sum)
return max_sum, random_numbers
def total_max_subarray_sum(n, initial_seed, min_val, max_val):
total_sum = 0
lcg_gen = lcg(initial_seed)
for _ in range(20):
seed = next(lcg_gen)
max_sum, _ = max_subarray_sum(n, seed, min_val, max_val) # unpack tuple
total_sum += max_sum
return total_sum
# Parameters
n = 10000
initial_seed = 42
min_val = -10
max_val = 10
# Timing
start_time = time.time()
result = total_max_subarray_sum(n, initial_seed, min_val, max_val)
end_time = time.time()
print("Total Maximum Subarray Sum (20 runs):", result)
print("Execution Time: {:.6f} seconds".format(end_time - start_time))
"""