Spaces:
Sleeping
Sleeping
File size: 37,489 Bytes
eddf5b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
---
comments: true
---
# Text Recognition Module Tutorial
## 1. Overview
The text recognition module is the core part of the OCR (Optical Character Recognition) system, responsible for extracting text information from text regions in images. The performance of this module directly affects the accuracy and efficiency of the entire OCR system. The text recognition module usually receives the bounding boxes of text regions output by the text detection module as input, and then converts the text in the images into editable and searchable electronic text through complex image processing and deep learning algorithms. The accuracy of text recognition results is crucial for subsequent applications such as information extraction and data mining.
## 2. List of Supported Models
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv5_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>86.38</td>
<td>8.46 / 2.36</td>
<td>31.21 / 31.21</td>
<td>81</td>
<td rowspan="2">PP-OCRv5_rec is a new generation text recognition model. It is designed to efficiently and accurately support the recognition of Simplified Chinese, Traditional Chinese, English, Japanese, as well as complex text scenarios such as handwriting, vertical text, pinyin, and rare characters with a single model. While maintaining recognition performance, it also balances inference speed and model robustness, providing efficient and accurate technical support for document understanding in various scenarios.</td>
</tr>
<tr>
<td>PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>81.29</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>16</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec_doc</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">Pretrained Model</a></td>
<td>86.58</td>
<td>8.69 / 2.78</td>
<td>37.93 / 37.93</td>
<td>182</td>
<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities.</td>
</tr>
<tr>
<td>PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>78.74</td>
<td>5.26 / 1.12</td>
<td>17.48 / 3.61</td>
<td>10.5</td>
<td>A lightweight recognition model of PP-OCRv4 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>85.19</td>
<td>8.75 / 2.49</td>
<td>36.93 / 36.93</td>
<td>173</td>
<td>The server-side model of PP-OCRv4, offering high inference accuracy and deployable on various servers.</td>
</tr>
<tr>
<td>en_PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>70.39</td>
<td>4.81 / 1.23</td>
<td>17.20 / 4.18</td>
<td>7.5</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model, supporting English and numeric character recognition.</td>
</tr>
</table>
> ❗ The above lists the <b>4 core models</b> mainly supported by the text recognition module. The module supports a total of <b>20 full models</b>, including multiple multilingual text recognition models. The complete model list is as follows:
<details><summary> 👉Model List Details</summary>
* <b>PP-OCRv5 Multi-Scenario Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Chinese Recognition Avg Accuracy(%)</th>
<th>English Recognition Avg Accuracy(%)</th>
<th>Traditional Chinese Recognition Avg Accuracy(%)</th>
<th>Japanese Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv5_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>86.38</td>
<td>64.70</td>
<td>93.29</td>
<td>60.35</td>
<td>8.46 / 2.36</td>
<td>31.21 / 31.21</td>
<td>81</td>
<td rowspan="2">PP-OCRv5_rec is a new generation text recognition model. It is designed to efficiently and accurately support the recognition of Simplified Chinese, Traditional Chinese, English, Japanese, as well as complex text scenarios such as handwriting, vertical text, pinyin, and rare characters with a single model. While maintaining recognition performance, it also balances inference speed and model robustness, providing efficient and accurate technical support for document understanding in various scenarios.</td>
</tr>
<tr>
<td>PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>81.29</td>
<td>66.00</td>
<td>83.55</td>
<td>54.65</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>16</td>
</tr>
</table>
* <b>Chinese Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv4_server_rec_doc</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">Pretrained Model</a></td>
<td>86.58</td>
<td>8.69 / 2.78</td>
<td>37.93 / 37.93</td>
<td>182</td>
<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities.</td>
</tr>
<tr>
<td>PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>78.74</td>
<td>5.26 / 1.12</td>
<td>17.48 / 3.61</td>
<td>10.5</td>
<td>A lightweight recognition model of PP-OCRv4 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>85.19</td>
<td>8.75 / 2.49</td>
<td>36.93 / 36.93</td>
<td>173</td>
<td>The server-side model of PP-OCRv4, offering high inference accuracy and deployable on various servers.</td>
</tr>
<tr>
<td>PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>72.96</td>
<td>3.89 / 1.16</td>
<td>8.72 / 3.56</td>
<td>10.3</td>
<td>A lightweight recognition model of PP-OCRv3 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
</table>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>ch_SVTRv2_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/ch_SVTRv2_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_SVTRv2_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>68.81</td>
<td>10.38 / 8.31</td>
<td>66.52 / 30.83</td>
<td>80.5</td>
<td rowspan="1">SVTRv2 is a server-side text recognition model developed by the OpenOCR team of the Vision and Learning Lab (FVL) at Fudan University. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 6% improvement in end-to-end recognition accuracy on Leaderboard A compared to PP-OCRv4.</td>
</tr>
</table>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>ch_RepSVTR_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/ch_RepSVTR_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_RepSVTR_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>65.07</td>
<td>6.29 / 1.57</td>
<td>20.64 / 5.40</td>
<td>22.1</td>
<td rowspan="1">RepSVTR is a mobile-side text recognition model based on SVTRv2. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 2.5% improvement in end-to-end recognition accuracy on Leaderboard B compared to PP-OCRv4, while maintaining similar inference speed.</td>
</tr>
</table>
* <b>English Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>en_PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td> 70.39</td>
<td>4.81 / 1.23</td>
<td>17.20 / 4.18</td>
<td>7.5</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model, supporting English and numeric character recognition.</td>
</tr>
<tr>
<td>en_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>70.69</td>
<td>3.56 / 0.78</td>
<td>8.44 / 5.78</td>
<td>17.3</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv3 recognition model, supporting English and numeric character recognition.</td>
</tr>
</table>
* <b>Multilingual Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>korean_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
korean_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/korean_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>88.0</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>An ultra-lightweight Korean text recognition model trained based on the PP-OCRv5 recognition framework. Supports Korean, English and numeric text recognition.</td>
</tr>
<tr>
<td>latin_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
latin_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/latin_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>84.7</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>A Latin-script text recognition model trained based on the PP-OCRv5 recognition framework. Supports most Latin alphabet languages and numeric text recognition.</td>
</tr>
<tr>
<td>eslav_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
eslav_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/eslav_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>81.6</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>An East Slavic language recognition model trained based on the PP-OCRv5 recognition framework. Supports East Slavic languages, English and numeric text recognition.</td>
</tr>
<tr>
<td>korean_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
korean_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/korean_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>60.21</td>
<td>3.73 / 0.98</td>
<td>8.76 / 2.91</td>
<td>9.6</td>
<td>An ultra-lightweight Korean recognition model trained based on the PP-OCRv3 recognition model, supporting Korean and numeric character recognition.</td>
</tr>
<tr>
<td>japan_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
japan_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/japan_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>45.69</td>
<td>3.86 / 1.01</td>
<td>8.62 / 2.92</td>
<td>9.8</td>
<td>An ultra-lightweight Japanese recognition model trained based on the PP-OCRv3 recognition model, supporting Japanese and numeric character recognition.</td>
</tr>
<tr>
<td>chinese_cht_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
chinese_cht_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/chinese_cht_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>82.06</td>
<td>3.90 / 1.16</td>
<td>9.24 / 3.18</td>
<td>10.8</td>
<td>An ultra-lightweight Traditional Chinese recognition model trained based on the PP-OCRv3 recognition model, supporting Traditional Chinese and numeric character recognition.</td>
</tr>
<tr>
<td>te_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
te_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/te_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>95.88</td>
<td>3.59 / 0.81</td>
<td>8.28 / 6.21</td>
<td>8.7</td>
<td>An ultra-lightweight Telugu recognition model trained based on the PP-OCRv3 recognition model, supporting Telugu and numeric character recognition.</td>
</tr>
<tr>
<td>ka_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
ka_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ka_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>96.96</td>
<td>3.49 / 0.89</td>
<td>8.63 / 2.77</td>
<td>17.4</td>
<td>An ultra-lightweight Kannada recognition model trained based on the PP-OCRv3 recognition model, supporting Kannada and numeric character recognition.</td>
</tr>
<tr>
<td>ta_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
ta_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ta_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>76.83</td>
<td>3.49 / 0.86</td>
<td>8.35 / 3.41</td>
<td>8.7</td>
<td>An ultra-lightweight Tamil recognition model trained based on the PP-OCRv3 recognition model, supporting Tamil and numeric character recognition.</td>
</tr>
<tr>
<td>latin_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
latin_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/latin_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>76.93</td>
<td>3.53 / 0.78</td>
<td>8.50 / 6.83</td>
<td>8.7</td>
<td>An ultra-lightweight Latin recognition model trained based on the PP-OCRv3 recognition model, supporting Latin and numeric character recognition.</td>
</tr>
<tr>
<td>arabic_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
arabic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/arabic_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>73.55</td>
<td>3.60 / 0.83</td>
<td>8.44 / 4.69</td>
<td>17.3</td>
<td>An ultra-lightweight Arabic alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Arabic alphabet and numeric character recognition.</td>
</tr>
<tr>
<td>cyrillic_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
cyrillic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/cyrillic_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>94.28</td>
<td>3.56 / 0.79</td>
<td>8.22 / 2.76</td>
<td>8.7</td>
<td>An ultra-lightweight Cyrillic alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Cyrillic alphabet and numeric character recognition.</td>
</tr>
<tr>
<td>devanagari_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
devanagari_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/devanagari_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>96.44</td>
<td>3.60 / 0.78</td>
<td>6.95 / 2.87</td>
<td>8.7</td>
<td>An ultra-lightweight Devanagari alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Devanagari alphabet and numeric character recognition.</td>
</tr>
</table>
<strong>Test Environment Description:</strong>
<ul>
<li><b>Performance Test Environment</b>
<ul>
<li><strong>Test Dataset:</strong>
<ul>
<li>
Chinese Recognition Models: A self-built Chinese dataset by PaddleOCR, covering street views, online images, documents, handwriting, with 11,000 images for text recognition.
</li>
<li>
ch_SVTRv2_rec: <a href="https://aistudio.baidu.com/competition/detail/1131/0/introduction">PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task</a> Leaderboard A evaluation set.
</li>
<li>
ch_RepSVTR_rec: <a href="https://aistudio.baidu.com/competition/detail/1131/0/introduction">PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task</a> Leaderboard B evaluation set.
</li>
<li>
English Recognition Models: A self-built English dataset by PaddleOCR.
</li>
<li>
Multilingual Recognition Models: A self-built multilingual dataset by PaddleOCR.
</li>
</ul>
</li>
<li><strong>Hardware Configuration:</strong>
<ul>
<li>GPU: NVIDIA Tesla T4</li>
<li>CPU: Intel Xeon Gold 6271C @ 2.60GHz</li>
</ul>
</li>
<li><strong>Software Environment:</strong>
<ul>
<li>Ubuntu 20.04 / CUDA 11.8 / cuDNN 8.9 / TensorRT 8.6.1.6</li>
<li>paddlepaddle 3.0.0 / paddleocr 3.0.3</li>
</ul>
</li>
</ul>
</li>
<li><b>Explanation of Inference Modes</b></li>
</ul>
<table border="1">
<thead>
<tr>
<th>Mode</th>
<th>GPU Configuration</th>
<th>CPU Configuration</th>
<th>Acceleration Technology Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Mode</td>
<td>FP32 Precision / No TRT Acceleration</td>
<td>FP32 Precision / 8 Threads</td>
<td>PaddleInference</td>
</tr>
<tr>
<td>High-Performance Mode</td>
<td>Optimal combination of precision type and acceleration strategy</td>
<td>FP32 Precision / 8 Threads</td>
<td>Selection of the optimal backend (Paddle/OpenVINO/TRT, etc.)</td>
</tr>
</tbody>
</table>
</details>
## 3. Quick Start
> ❗ Before starting, please install the PaddleOCR wheel package. For details, please refer to the [Installation Guide](../installation.en.md).
You can quickly experience it with one command:
```bash
paddleocr text_recognition -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png
```
<b>Note:</b> The official PaddleOCR models are downloaded from HuggingFace by default. If you cannot access HuggingFace, you can change the model source to BOS by setting the environment variable `PADDLE_PDX_MODEL_SOURCE="BOS"`. More mainstream model sources will be supported in the future.
You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the [sample image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png) to your local machine.
```python
from paddleocr import TextRecognition
model = TextRecognition(model_name="PP-OCRv5_server_rec")
output = model.predict(input="general_ocr_rec_001.png", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
```
After running, the result is as follows:
```bash
{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9823867082595825}}
```
The meanings of the parameters in the result are as follows:
- `input_path`: The path of the input text line image to be predicted
- `page_index`: If the input is a PDF file, it indicates which page of the PDF the current text line is from; otherwise, it is `None`
- `rec_text`: The predicted text of the text line image
- `rec_score`: The confidence score of the predicted text for the text line image
The visualized image is as follows:
<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/modules/text_recog/general_ocr_rec_001.png"/>
Descriptions of related methods and parameters are as follows:
* Instantiate the text recognition model using `TextRecognition` (using `PP-OCRv5_server_rec` as an example), as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model_name</code></td>
<td>If set to <code>None</code>, <code>PP-OCRv5_server_rec</code> is used.</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>model_dir</code></td>
<td>Model storage path.</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>device</code></td>
<td>Device for inference.<br/>
<b>Examples:</b> <code>"cpu"</code>, <code>"gpu"</code>, <code>"npu"</code>, <code>"gpu:0"</code>, <code>"gpu:0,1"</code>.<br/>
If multiple devices are specified, inference will be performed in parallel.<br/>
By default, GPU 0 is used; if unavailable, CPU is used.
</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>enable_hpi</code></td>
<td>Whether to enable high performance inference.</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>use_tensorrt</code></td>
<td>Whether to enable the TensorRT subgraph engine of Paddle Inference.<br/>
For Paddle with CUDA 11.8, the compatible TensorRT version is 8.x (x>=6), recommended 8.6.1.6.<br/>
</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>precision</code></td>
<td>Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.<br/><b>Options:</b> <code>fp32</code>, <code>fp16</code>.</td>
<td><code>str</code></td>
<td><code>"fp32"</code></td>
</tr>
<tr>
<td><code>enable_mkldnn</code></td>
<td>Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.</td>
<td><code>bool</code></td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>mkldnn_cache_capacity</code></td>
<td>MKL-DNN cache capacity.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
<tr>
<td><code>cpu_threads</code></td>
<td>Number of threads to use for inference on CPUs.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
<tr>
<td><code>input_shape</code></td>
<td>Input image size for the model in the format <code>(C, H, W)</code>.</td>
<td><code>tuple|None</code></td>
<td><code>None</code></td>
</tr>
</tbody>
</table>
* Call the `predict()` method of the text recognition model for inference. This method returns a list of results. In addition, this module also provides the `predict_iter()` method. The two methods are completely consistent in terms of parameter acceptance and result return. The difference is that `predict_iter()` returns a `generator`, which can process and obtain prediction results step by step. It is suitable for scenarios where large datasets need to be processed or memory savings are desired. You can choose either of these two methods according to your actual needs. The parameters of the `predict()` method include `input` and `batch_size`, with specific descriptions as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td><code>input</code></td>
<td>Data to be predicted, supporting multiple input types, required.
<ul>
<li><b>Python Var</b>: Image data represented by <code>numpy.ndarray</code></li>
<li><b>str</b>: Local path of image file or PDF file: <code>/root/data/img.jpg</code>; <b>URL link</b>: Network URL of image file or PDF file: <a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png">Example</a>; <b>Local directory</b>: The directory should contain the images to be predicted, such as <code>/root/data/</code> (currently, prediction of PDF files in the directory is not supported, PDF files need to be specified to a specific file path)</li>
<li><b>list</b>: The elements of the list should be data of the above types, such as <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
</ul>
</td>
<td><code>Python Var|str|list</code></td>
<td></td>
</tr>
<tr>
<td><code>batch_size</code></td>
<td>Batch size, can be set to any positive integer.</td>
<td><code>int</code></td>
<td>1</td>
</tr>
</table>
* Process the prediction results. The prediction result for each sample is a corresponding Result object, which supports operations such as printing, saving as an image, and saving as a `json` file:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td rowspan="3"><code>print()</code></td>
<td rowspan="3">Print the result to the terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Whether to format the output content using <code>JSON</code> indentation</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters as <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td><code>False</code></td>
</tr>
<tr>
<td rowspan="3"><code>save_to_json()</code></td>
<td rowspan="3">Save the result as a file in <code>json</code> format</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The file path to save the result. When it is a directory, the saved file name is consistent with the naming of the input file type.</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters as <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>save_to_img()</code></td>
<td>Save the result as a file in image format</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The file path to save the result. When it is a directory, the saved file name is consistent with the naming of the input file type.</td>
<td>None</td>
</tr>
</table>
* In addition, it also supports obtaining the visualized image with results and the prediction results through attributes, as follows:
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tr>
<td rowspan="1"><code>json</code></td>
<td rowspan="1">Obtain the prediction result in <code>json</code> format</td>
</tr>
<tr>
<td rowspan="1"><code>img</code></td>
<td rowspan="1">Obtain the visualized image in <code>dict</code> format</td>
</tr>
</table>
## 4. Secondary Development
If the above models do not perform well in your scenario, you can try the following steps for secondary development. Here, we take training `PP-OCRv5_server_rec` as an example. For other models, just replace the corresponding configuration file. First, you need to prepare a dataset for text recognition. You can refer to the format of the [Text Recognition Demo Data](https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar) for preparation. After preparation, you can train and export the model as follows. After export, the model can be quickly integrated into the above API. This example uses the Text Recognition Demo Data. Before training the model, please make sure you have installed the dependencies required by PaddleOCR as described in the [Installation Guide](../installation.md).
### 4.1 Dataset and Pre-trained Model Preparation
#### 4.1.1 Prepare the Dataset
```shell
# Download the example dataset
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar
tar -xf ocr_rec_dataset_examples.tar
```
#### 4.1.2 Download the Pre-trained Model
```shell
# Download the PP-OCRv5_server_rec pre-trained model
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams
```
### 4.2 Model Training
PaddleOCR modularizes its code. To train the `PP-OCRv5_server_rec` recognition model, you need to use its [configuration file](https://github.com/PaddlePaddle/PaddleOCR/blob/main/configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml).
The training commands are as follows:
```bash
# Single-GPU training (default training method)
python3 tools/train.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml \
-o Global.pretrained_model=./PP-OCRv5_server_rec_pretrained.pdparams
# Multi-GPU training, specify GPU IDs via the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml \
-o Global.pretrained_model=./PP-OCRv5_server_rec_pretrained.pdparams
```
### 4.3 Model Evaluation
You can evaluate the trained weights, such as `output/xxx/xxx.pdparams`, using the following command:
```bash
# Note: Set the path of pretrained_model to a local path. If you use a model you trained and saved yourself, please modify the path and file name to {path/to/weights}/{model_name}.
# Demo test set evaluation
python3 tools/eval.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml -o \
Global.pretrained_model=output/xxx/xxx.pdparams
```
### 4.4 Model Export
```bash
python3 tools/export_model.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml -o \
Global.pretrained_model=output/xxx/xxx.pdparams \
Global.save_inference_dir="./PP-OCRv5_server_rec_infer/"
```
After exporting the model, the static graph model will be stored in `./PP-OCRv5_server_rec_infer/` in the current directory. In this directory, you will see the following files:
```
./PP-OCRv5_server_rec_infer/
├── inference.json
├── inference.pdiparams
├── inference.yml
```
At this point, the secondary development is complete. This static graph model can be directly integrated into the PaddleOCR API.
|