File size: 37,489 Bytes
eddf5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
---
comments: true
---

# Text Recognition Module Tutorial

## 1. Overview

The text recognition module is the core part of the OCR (Optical Character Recognition) system, responsible for extracting text information from text regions in images. The performance of this module directly affects the accuracy and efficiency of the entire OCR system. The text recognition module usually receives the bounding boxes of text regions output by the text detection module as input, and then converts the text in the images into editable and searchable electronic text through complex image processing and deep learning algorithms. The accuracy of text recognition results is crucial for subsequent applications such as information extraction and data mining.

## 2. List of Supported Models

<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv5_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>86.38</td>
<td>8.46 / 2.36</td>
<td>31.21 / 31.21</td>
<td>81</td>
<td rowspan="2">PP-OCRv5_rec is a new generation text recognition model. It is designed to efficiently and accurately support the recognition of Simplified Chinese, Traditional Chinese, English, Japanese, as well as complex text scenarios such as handwriting, vertical text, pinyin, and rare characters with a single model. While maintaining recognition performance, it also balances inference speed and model robustness, providing efficient and accurate technical support for document understanding in various scenarios.</td>
</tr>
<tr>
<td>PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>81.29</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>16</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec_doc</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">Pretrained Model</a></td>
<td>86.58</td>
<td>8.69 / 2.78</td>
<td>37.93 / 37.93</td>
<td>182</td>
<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities.</td>
</tr>
<tr>
<td>PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>78.74</td>
<td>5.26 / 1.12</td>
<td>17.48 / 3.61</td>
<td>10.5</td>
<td>A lightweight recognition model of PP-OCRv4 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>85.19</td>
<td>8.75 / 2.49</td>
<td>36.93 / 36.93</td>
<td>173</td>
<td>The server-side model of PP-OCRv4, offering high inference accuracy and deployable on various servers.</td>
</tr>
<tr>
<td>en_PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>70.39</td>
<td>4.81 / 1.23</td>
<td>17.20 / 4.18</td>
<td>7.5</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model, supporting English and numeric character recognition.</td>
</tr>
</table>

> ❗ The above lists the <b>4 core models</b> mainly supported by the text recognition module. The module supports a total of <b>20 full models</b>, including multiple multilingual text recognition models. The complete model list is as follows:

<details><summary> 👉Model List Details</summary>

* <b>PP-OCRv5 Multi-Scenario Models</b>

<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Chinese Recognition Avg Accuracy(%)</th>
<th>English Recognition Avg Accuracy(%)</th>
<th>Traditional Chinese Recognition Avg Accuracy(%)</th>
<th>Japanese Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv5_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>86.38</td>
<td>64.70</td>
<td>93.29</td>
<td>60.35</td>
<td>8.46 / 2.36</td>
<td>31.21 / 31.21</td>
<td>81</td>
<td rowspan="2">PP-OCRv5_rec is a new generation text recognition model. It is designed to efficiently and accurately support the recognition of Simplified Chinese, Traditional Chinese, English, Japanese, as well as complex text scenarios such as handwriting, vertical text, pinyin, and rare characters with a single model. While maintaining recognition performance, it also balances inference speed and model robustness, providing efficient and accurate technical support for document understanding in various scenarios.</td>
</tr>
<tr>
<td>PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>81.29</td>
<td>66.00</td>
<td>83.55</td>
<td>54.65</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>16</td>
</tr>
</table>

* <b>Chinese Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>PP-OCRv4_server_rec_doc</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">Pretrained Model</a></td>
<td>86.58</td>
<td>8.69 / 2.78</td>
<td>37.93 / 37.93</td>
<td>182</td>
<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data, building upon PP-OCRv4_server_rec. It enhances the recognition capabilities for some Traditional Chinese characters, Japanese characters, and special symbols, supporting over 15,000 characters. In addition to improving document-related text recognition, it also enhances general text recognition capabilities.</td>
</tr>
<tr>
<td>PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>78.74</td>
<td>5.26 / 1.12</td>
<td>17.48 / 3.61</td>
<td>10.5</td>
<td>A lightweight recognition model of PP-OCRv4 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
<tr>
<td>PP-OCRv4_server_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>85.19</td>
<td>8.75 / 2.49</td>
<td>36.93 / 36.93</td>
<td>173</td>
<td>The server-side model of PP-OCRv4, offering high inference accuracy and deployable on various servers.</td>
</tr>
<tr>
<td>PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>72.96</td>
<td>3.89 / 1.16</td>
<td>8.72 / 3.56</td>
<td>10.3</td>
<td>A lightweight recognition model of PP-OCRv3 with high inference efficiency, suitable for deployment on various hardware devices, including edge devices.</td>
</tr>
</table>

<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>ch_SVTRv2_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/ch_SVTRv2_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_SVTRv2_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>68.81</td>
<td>10.38 / 8.31</td>
<td>66.52 / 30.83</td>
<td>80.5</td>
<td rowspan="1">SVTRv2 is a server-side text recognition model developed by the OpenOCR team of the Vision and Learning Lab (FVL) at Fudan University. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 6% improvement in end-to-end recognition accuracy on Leaderboard A compared to PP-OCRv4.</td>
</tr>
</table>

<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>ch_RepSVTR_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/ch_RepSVTR_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_RepSVTR_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>65.07</td>
<td>6.29 / 1.57</td>
<td>20.64 / 5.40</td>
<td>22.1</td>
<td rowspan="1">RepSVTR is a mobile-side text recognition model based on SVTRv2. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 2.5% improvement in end-to-end recognition accuracy on Leaderboard B compared to PP-OCRv4, while maintaining similar inference speed.</td>
</tr>
</table>

* <b>English Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>en_PP-OCRv4_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv4_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td> 70.39</td>
<td>4.81 / 1.23</td>
<td>17.20 / 4.18</td>
<td>7.5</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model, supporting English and numeric character recognition.</td>
</tr>
<tr>
<td>en_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
en_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>70.69</td>
<td>3.56 / 0.78</td>
<td>8.44 / 5.78</td>
<td>17.3</td>
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv3 recognition model, supporting English and numeric character recognition.</td>
</tr>
</table>

* <b>Multilingual Recognition Models</b>
<table>
<tr>
<th>Model</th><th>Model Download Links</th>
<th>Recognition Avg Accuracy(%)</th>
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
<th>Model Storage Size (MB)</th>
<th>Introduction</th>
</tr>
<tr>
<td>korean_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
korean_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/korean_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>88.0</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>An ultra-lightweight Korean text recognition model trained based on the PP-OCRv5 recognition framework. Supports Korean, English and numeric text recognition.</td>
</tr>
<tr>
<td>latin_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
latin_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/latin_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>84.7</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>A Latin-script text recognition model trained based on the PP-OCRv5 recognition framework. Supports most Latin alphabet languages and numeric text recognition.</td>
</tr>
<tr>
<td>eslav_PP-OCRv5_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
eslav_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/eslav_PP-OCRv5_mobile_rec_pretrained.pdparams">Pre-trained Model</a></td>
<td>81.6</td>
<td>5.43 / 1.46</td>
<td>21.20 / 5.32</td>
<td>14</td>
<td>An East Slavic language recognition model trained based on the PP-OCRv5 recognition framework. Supports East Slavic languages, English and numeric text recognition.</td>
</tr>
<tr>
<td>korean_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
korean_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/korean_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>60.21</td>
<td>3.73 / 0.98</td>
<td>8.76 / 2.91</td>
<td>9.6</td>
<td>An ultra-lightweight Korean recognition model trained based on the PP-OCRv3 recognition model, supporting Korean and numeric character recognition.</td>
</tr>
<tr>
<td>japan_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
japan_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/japan_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>45.69</td>
<td>3.86 / 1.01</td>
<td>8.62 / 2.92</td>
<td>9.8</td>
<td>An ultra-lightweight Japanese recognition model trained based on the PP-OCRv3 recognition model, supporting Japanese and numeric character recognition.</td>
</tr>
<tr>
<td>chinese_cht_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
chinese_cht_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/chinese_cht_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>82.06</td>
<td>3.90 / 1.16</td>
<td>9.24 / 3.18</td>
<td>10.8</td>
<td>An ultra-lightweight Traditional Chinese recognition model trained based on the PP-OCRv3 recognition model, supporting Traditional Chinese and numeric character recognition.</td>
</tr>
<tr>
<td>te_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
te_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/te_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>95.88</td>
<td>3.59 / 0.81</td>
<td>8.28 / 6.21</td>
<td>8.7</td>
<td>An ultra-lightweight Telugu recognition model trained based on the PP-OCRv3 recognition model, supporting Telugu and numeric character recognition.</td>
</tr>
<tr>
<td>ka_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
ka_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ka_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>96.96</td>
<td>3.49 / 0.89</td>
<td>8.63 / 2.77</td>
<td>17.4</td>
<td>An ultra-lightweight Kannada recognition model trained based on the PP-OCRv3 recognition model, supporting Kannada and numeric character recognition.</td>
</tr>
<tr>
<td>ta_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
ta_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ta_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>76.83</td>
<td>3.49 / 0.86</td>
<td>8.35 / 3.41</td>
<td>8.7</td>
<td>An ultra-lightweight Tamil recognition model trained based on the PP-OCRv3 recognition model, supporting Tamil and numeric character recognition.</td>
</tr>
<tr>
<td>latin_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
latin_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/latin_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>76.93</td>
<td>3.53 / 0.78</td>
<td>8.50 / 6.83</td>
<td>8.7</td>
<td>An ultra-lightweight Latin recognition model trained based on the PP-OCRv3 recognition model, supporting Latin and numeric character recognition.</td>
</tr>
<tr>
<td>arabic_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
arabic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/arabic_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>73.55</td>
<td>3.60 / 0.83</td>
<td>8.44 / 4.69</td>
<td>17.3</td>
<td>An ultra-lightweight Arabic alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Arabic alphabet and numeric character recognition.</td>
</tr>
<tr>
<td>cyrillic_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
cyrillic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/cyrillic_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>94.28</td>
<td>3.56 / 0.79</td>
<td>8.22 / 2.76</td>
<td>8.7</td>
<td>An ultra-lightweight Cyrillic alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Cyrillic alphabet and numeric character recognition.</td>
</tr>
<tr>
<td>devanagari_PP-OCRv3_mobile_rec</td>
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
devanagari_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/devanagari_PP-OCRv3_mobile_rec_pretrained.pdparams">Pretrained Model</a></td>
<td>96.44</td>
<td>3.60 / 0.78</td>
<td>6.95 / 2.87</td>
<td>8.7</td>
<td>An ultra-lightweight Devanagari alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Devanagari alphabet and numeric character recognition.</td>
</tr>
</table>

<strong>Test Environment Description:</strong>

  <ul>
      <li><b>Performance Test Environment</b>
          <ul>
              <li><strong>Test Dataset:</strong>
                 <ul>
                    <li>
                    Chinese Recognition Models: A self-built Chinese dataset by PaddleOCR, covering street views, online images, documents, handwriting, with 11,000 images for text recognition.
                    </li>
                    <li>
                      ch_SVTRv2_rec: <a href="https://aistudio.baidu.com/competition/detail/1131/0/introduction">PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task</a> Leaderboard A evaluation set.
                    </li>
                    <li>
                      ch_RepSVTR_rec: <a href="https://aistudio.baidu.com/competition/detail/1131/0/introduction">PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task</a> Leaderboard B evaluation set.
                    </li>
                    <li>
                      English Recognition Models: A self-built English dataset by PaddleOCR.
                    </li>
                    <li>
                      Multilingual Recognition Models: A self-built multilingual dataset by PaddleOCR.
                    </li>
                 </ul>
              </li>
              <li><strong>Hardware Configuration:</strong>
                  <ul>
                      <li>GPU: NVIDIA Tesla T4</li>
                      <li>CPU: Intel Xeon Gold 6271C @ 2.60GHz</li>
                  </ul>
              </li>
              <li><strong>Software Environment:</strong>
                  <ul>
                      <li>Ubuntu 20.04 / CUDA 11.8 / cuDNN 8.9 / TensorRT 8.6.1.6</li>
                      <li>paddlepaddle 3.0.0 / paddleocr 3.0.3</li>
                  </ul>
              </li>
          </ul>
      </li>
      <li><b>Explanation of Inference Modes</b></li>
  </ul>

<table border="1">
    <thead>
        <tr>
            <th>Mode</th>
            <th>GPU Configuration</th>
            <th>CPU Configuration</th>
            <th>Acceleration Technology Combination</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>Normal Mode</td>
            <td>FP32 Precision / No TRT Acceleration</td>
            <td>FP32 Precision / 8 Threads</td>
            <td>PaddleInference</td>
        </tr>
        <tr>
            <td>High-Performance Mode</td>
            <td>Optimal combination of precision type and acceleration strategy</td>
            <td>FP32 Precision / 8 Threads</td>
            <td>Selection of the optimal backend (Paddle/OpenVINO/TRT, etc.)</td>
        </tr>
    </tbody>
</table>

</details>

## 3. Quick Start

> ❗ Before starting, please install the PaddleOCR wheel package. For details, please refer to the [Installation Guide](../installation.en.md).

You can quickly experience it with one command:

```bash
paddleocr text_recognition -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png
```

<b>Note:</b> The official PaddleOCR models are downloaded from HuggingFace by default. If you cannot access HuggingFace, you can change the model source to BOS by setting the environment variable `PADDLE_PDX_MODEL_SOURCE="BOS"`. More mainstream model sources will be supported in the future.

You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the [sample image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png) to your local machine.

```python
from paddleocr import TextRecognition
model = TextRecognition(model_name="PP-OCRv5_server_rec")
output = model.predict(input="general_ocr_rec_001.png", batch_size=1)
for res in output:
    res.print()
    res.save_to_img(save_path="./output/")
    res.save_to_json(save_path="./output/res.json")
```

After running, the result is as follows:
```bash
{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9823867082595825}}
```

The meanings of the parameters in the result are as follows:
- `input_path`: The path of the input text line image to be predicted
- `page_index`: If the input is a PDF file, it indicates which page of the PDF the current text line is from; otherwise, it is `None`
- `rec_text`: The predicted text of the text line image
- `rec_score`: The confidence score of the predicted text for the text line image

The visualized image is as follows:

<img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/modules/text_recog/general_ocr_rec_001.png"/>

Descriptions of related methods and parameters are as follows:

* Instantiate the text recognition model using `TextRecognition` (using `PP-OCRv5_server_rec` as an example), as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model_name</code></td>
<td>If set to <code>None</code>, <code>PP-OCRv5_server_rec</code> is used.</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>model_dir</code></td>
<td>Model storage path.</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>device</code></td>
<td>Device for inference.<br/>
<b>Examples:</b> <code>"cpu"</code>, <code>"gpu"</code>, <code>"npu"</code>, <code>"gpu:0"</code>, <code>"gpu:0,1"</code>.<br/>
If multiple devices are specified, inference will be performed in parallel.<br/>
By default, GPU 0 is used; if unavailable, CPU is used.
</td>
<td><code>str|None</code></td>
<td><code>None</code></td>
</tr>
<tr>
<td><code>enable_hpi</code></td>
<td>Whether to enable high performance inference.</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>use_tensorrt</code></td>
<td>Whether to enable the TensorRT subgraph engine of Paddle Inference.<br/>
For Paddle with CUDA 11.8, the compatible TensorRT version is 8.x (x>=6), recommended 8.6.1.6.<br/>

</td>
<td><code>bool</code></td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>precision</code></td>
<td>Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.<br/><b>Options:</b> <code>fp32</code>, <code>fp16</code>.</td>
<td><code>str</code></td>
<td><code>"fp32"</code></td>
</tr>
<tr>
<td><code>enable_mkldnn</code></td>
<td>Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.</td>
<td><code>bool</code></td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>mkldnn_cache_capacity</code></td>
<td>MKL-DNN cache capacity.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
<tr>
<td><code>cpu_threads</code></td>
<td>Number of threads to use for inference on CPUs.</td>
<td><code>int</code></td>
<td><code>10</code></td>
</tr>
<tr>
<td><code>input_shape</code></td>
<td>Input image size for the model in the format <code>(C, H, W)</code>.</td>
<td><code>tuple|None</code></td>
<td><code>None</code></td>
</tr>
</tbody>
</table>

* Call the `predict()` method of the text recognition model for inference. This method returns a list of results. In addition, this module also provides the `predict_iter()` method. The two methods are completely consistent in terms of parameter acceptance and result return. The difference is that `predict_iter()` returns a `generator`, which can process and obtain prediction results step by step. It is suitable for scenarios where large datasets need to be processed or memory savings are desired. You can choose either of these two methods according to your actual needs. The parameters of the `predict()` method include `input` and `batch_size`, with specific descriptions as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td><code>input</code></td>
<td>Data to be predicted, supporting multiple input types, required.
<ul>
<li><b>Python Var</b>: Image data represented by <code>numpy.ndarray</code></li>
<li><b>str</b>: Local path of image file or PDF file: <code>/root/data/img.jpg</code>; <b>URL link</b>: Network URL of image file or PDF file: <a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png">Example</a>; <b>Local directory</b>: The directory should contain the images to be predicted, such as <code>/root/data/</code> (currently, prediction of PDF files in the directory is not supported, PDF files need to be specified to a specific file path)</li>
<li><b>list</b>: The elements of the list should be data of the above types, such as <code>[numpy.ndarray, numpy.ndarray]</code>, <code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>, <code>["/root/data1", "/root/data2"]</code></li>
</ul>
</td>
<td><code>Python Var|str|list</code></td>
<td></td>
</tr>
<tr>
<td><code>batch_size</code></td>
<td>Batch size, can be set to any positive integer.</td>
<td><code>int</code></td>
<td>1</td>
</tr>
</table>

* Process the prediction results. The prediction result for each sample is a corresponding Result object, which supports operations such as printing, saving as an image, and saving as a `json` file:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tr>
<td rowspan="3"><code>print()</code></td>
<td rowspan="3">Print the result to the terminal</td>
<td><code>format_json</code></td>
<td><code>bool</code></td>
<td>Whether to format the output content using <code>JSON</code> indentation</td>
<td><code>True</code></td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters as <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td><code>False</code></td>
</tr>
<tr>
<td rowspan="3"><code>save_to_json()</code></td>
<td rowspan="3">Save the result as a file in <code>json</code> format</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The file path to save the result. When it is a directory, the saved file name is consistent with the naming of the input file type.</td>
<td>None</td>
</tr>
<tr>
<td><code>indent</code></td>
<td><code>int</code></td>
<td>Specifies the indentation level to beautify the output <code>JSON</code> data, making it more readable. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td>4</td>
</tr>
<tr>
<td><code>ensure_ascii</code></td>
<td><code>bool</code></td>
<td>Controls whether to escape non-<code>ASCII</code> characters as <code>Unicode</code>. When set to <code>True</code>, all non-<code>ASCII</code> characters will be escaped; <code>False</code> retains the original characters. Only effective when <code>format_json</code> is <code>True</code>.</td>
<td><code>False</code></td>
</tr>
<tr>
<td><code>save_to_img()</code></td>
<td>Save the result as a file in image format</td>
<td><code>save_path</code></td>
<td><code>str</code></td>
<td>The file path to save the result. When it is a directory, the saved file name is consistent with the naming of the input file type.</td>
<td>None</td>
</tr>
</table>

* In addition, it also supports obtaining the visualized image with results and the prediction results through attributes, as follows:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tr>
<td rowspan="1"><code>json</code></td>
<td rowspan="1">Obtain the prediction result in <code>json</code> format</td>
</tr>
<tr>
<td rowspan="1"><code>img</code></td>
<td rowspan="1">Obtain the visualized image in <code>dict</code> format</td>
</tr>
</table>

## 4. Secondary Development

If the above models do not perform well in your scenario, you can try the following steps for secondary development. Here, we take training `PP-OCRv5_server_rec` as an example. For other models, just replace the corresponding configuration file. First, you need to prepare a dataset for text recognition. You can refer to the format of the [Text Recognition Demo Data](https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar) for preparation. After preparation, you can train and export the model as follows. After export, the model can be quickly integrated into the above API. This example uses the Text Recognition Demo Data. Before training the model, please make sure you have installed the dependencies required by PaddleOCR as described in the [Installation Guide](../installation.md).

### 4.1 Dataset and Pre-trained Model Preparation

#### 4.1.1 Prepare the Dataset

```shell
# Download the example dataset
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar
tar -xf ocr_rec_dataset_examples.tar
```

#### 4.1.2 Download the Pre-trained Model

```shell
# Download the PP-OCRv5_server_rec pre-trained model
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams
```

### 4.2 Model Training

PaddleOCR modularizes its code. To train the `PP-OCRv5_server_rec` recognition model, you need to use its [configuration file](https://github.com/PaddlePaddle/PaddleOCR/blob/main/configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml).

The training commands are as follows:

```bash
# Single-GPU training (default training method)
python3 tools/train.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml \
   -o Global.pretrained_model=./PP-OCRv5_server_rec_pretrained.pdparams

# Multi-GPU training, specify GPU IDs via the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml \
        -o Global.pretrained_model=./PP-OCRv5_server_rec_pretrained.pdparams
```

### 4.3 Model Evaluation

You can evaluate the trained weights, such as `output/xxx/xxx.pdparams`, using the following command:

```bash
# Note: Set the path of pretrained_model to a local path. If you use a model you trained and saved yourself, please modify the path and file name to {path/to/weights}/{model_name}.
# Demo test set evaluation
python3 tools/eval.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml -o \
Global.pretrained_model=output/xxx/xxx.pdparams
```

### 4.4 Model Export

```bash
python3 tools/export_model.py -c configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml -o \
Global.pretrained_model=output/xxx/xxx.pdparams \
Global.save_inference_dir="./PP-OCRv5_server_rec_infer/"
```

After exporting the model, the static graph model will be stored in `./PP-OCRv5_server_rec_infer/` in the current directory. In this directory, you will see the following files:
```
./PP-OCRv5_server_rec_infer/
├── inference.json
├── inference.pdiparams
├── inference.yml
```
At this point, the secondary development is complete. This static graph model can be directly integrated into the PaddleOCR API.