Murali-rade commited on
Commit
4d64ae1
Β·
verified Β·
1 Parent(s): 84e1964

Upload 11 files

Browse files
README.md CHANGED
@@ -1,12 +1,15 @@
1
- ---
2
- title: Final Gaia Agent
3
- emoji: ⚑
4
- colorFrom: gray
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.48.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
1
+ ---
2
+ title: Template Final Assignment
3
+ emoji: πŸ•΅πŸ»β€β™‚οΈ
4
+ colorFrom: indigo
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 5.25.2
8
+ app_file: app.py
9
+ pinned: false
10
+ hf_oauth: true
11
+ # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
+ hf_oauth_expiration_minutes: 480
13
+ ---
14
+
15
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
agent.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from typing import List, Dict, Any, Optional
4
+ import tempfile
5
+ import re
6
+ import json
7
+ import requests
8
+ from urllib.parse import urlparse
9
+ import pytesseract
10
+ from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
11
+ import cmath
12
+ import pandas as pd
13
+ import uuid
14
+ import numpy as np
15
+ from code_interpreter import CodeInterpreter
16
+
17
+ interpreter_instance = CodeInterpreter()
18
+
19
+ from image_processing import *
20
+
21
+ """Langraph"""
22
+ from langgraph.graph import START, StateGraph, MessagesState
23
+ from langchain_community.tools.tavily_search import TavilySearchResults
24
+ from langchain_community.document_loaders import WikipediaLoader
25
+ from langchain_community.document_loaders import ArxivLoader
26
+ from langgraph.prebuilt import ToolNode, tools_condition
27
+ from langchain_google_genai import ChatGoogleGenerativeAI
28
+ from langchain_groq import ChatGroq
29
+ from langchain_huggingface import (
30
+ ChatHuggingFace,
31
+ HuggingFaceEndpoint,
32
+ HuggingFaceEmbeddings,
33
+ )
34
+ from langchain_community.vectorstores import SupabaseVectorStore
35
+ from langchain_core.messages import SystemMessage, HumanMessage
36
+ from langchain_core.tools import tool
37
+ from langchain.tools.retriever import create_retriever_tool
38
+ from supabase.client import Client, create_client
39
+
40
+ load_dotenv()
41
+
42
+ ### =============== BROWSER TOOLS =============== ###
43
+
44
+
45
+ @tool
46
+ def wiki_search(query: str) -> str:
47
+ """Search Wikipedia for a query and return maximum 2 results.
48
+
49
+ Args:
50
+ query: The search query."""
51
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
52
+ formatted_search_docs = "\n\n---\n\n".join(
53
+ [
54
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
55
+ for doc in search_docs
56
+ ]
57
+ )
58
+ return {"wiki_results": formatted_search_docs}
59
+
60
+
61
+ @tool
62
+ def web_search(query: str) -> str:
63
+ """Search Tavily for a query and return maximum 3 results.
64
+
65
+ Args:
66
+ query: The search query."""
67
+ search_docs = TavilySearchResults(max_results=3).invoke(query)
68
+ formatted_search_docs = "\n\n---\n\n".join(
69
+ [
70
+ f'<Document source="{doc.get("url", "")}" title="{doc.get("title", "")}"/>\n{doc.get("content", "")}\n</Document>'
71
+ for doc in search_docs
72
+ ]
73
+ )
74
+ return {"web_results": formatted_search_docs}
75
+
76
+
77
+ @tool
78
+ def arxiv_search(query: str) -> str:
79
+ """Search Arxiv for a query and return maximum 3 result.
80
+
81
+ Args:
82
+ query: The search query."""
83
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
84
+ formatted_search_docs = "\n\n---\n\n".join(
85
+ [
86
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
87
+ for doc in search_docs
88
+ ]
89
+ )
90
+ return {"arxiv_results": formatted_search_docs}
91
+
92
+
93
+ ### =============== CODE INTERPRETER TOOLS =============== ###
94
+
95
+
96
+ @tool
97
+ def execute_code_multilang(code: str, language: str = "python") -> str:
98
+ """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
99
+
100
+ Args:
101
+ code (str): The source code to execute.
102
+ language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
103
+
104
+ Returns:
105
+ A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
106
+ """
107
+ supported_languages = ["python", "bash", "sql", "c", "java"]
108
+ language = language.lower()
109
+
110
+ if language not in supported_languages:
111
+ return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
112
+
113
+ result = interpreter_instance.execute_code(code, language=language)
114
+
115
+ response = []
116
+
117
+ if result["status"] == "success":
118
+ response.append(f"βœ… Code executed successfully in **{language.upper()}**")
119
+
120
+ if result.get("stdout"):
121
+ response.append(
122
+ "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
123
+ )
124
+
125
+ if result.get("stderr"):
126
+ response.append(
127
+ "\n**Standard Error (if any):**\n```\n"
128
+ + result["stderr"].strip()
129
+ + "\n```"
130
+ )
131
+
132
+ if result.get("result") is not None:
133
+ response.append(
134
+ "\n**Execution Result:**\n```\n"
135
+ + str(result["result"]).strip()
136
+ + "\n```"
137
+ )
138
+
139
+ if result.get("dataframes"):
140
+ for df_info in result["dataframes"]:
141
+ response.append(
142
+ f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
143
+ )
144
+ df_preview = pd.DataFrame(df_info["head"])
145
+ response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
146
+
147
+ if result.get("plots"):
148
+ response.append(
149
+ f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
150
+ )
151
+
152
+ else:
153
+ response.append(f"❌ Code execution failed in **{language.upper()}**")
154
+ if result.get("stderr"):
155
+ response.append(
156
+ "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
157
+ )
158
+
159
+ return "\n".join(response)
160
+
161
+
162
+ ### =============== MATHEMATICAL TOOLS =============== ###
163
+
164
+
165
+ @tool
166
+ def multiply(a: float, b: float) -> float:
167
+ """
168
+ Multiplies two numbers.
169
+
170
+ Args:
171
+ a (float): the first number
172
+ b (float): the second number
173
+ """
174
+ return a * b
175
+
176
+
177
+ @tool
178
+ def add(a: float, b: float) -> float:
179
+ """
180
+ Adds two numbers.
181
+
182
+ Args:
183
+ a (float): the first number
184
+ b (float): the second number
185
+ """
186
+ return a + b
187
+
188
+
189
+ @tool
190
+ def subtract(a: float, b: float) -> int:
191
+ """
192
+ Subtracts two numbers.
193
+
194
+ Args:
195
+ a (float): the first number
196
+ b (float): the second number
197
+ """
198
+ return a - b
199
+
200
+
201
+ @tool
202
+ def divide(a: float, b: float) -> float:
203
+ """
204
+ Divides two numbers.
205
+
206
+ Args:
207
+ a (float): the first float number
208
+ b (float): the second float number
209
+ """
210
+ if b == 0:
211
+ raise ValueError("Cannot divided by zero.")
212
+ return a / b
213
+
214
+
215
+ @tool
216
+ def modulus(a: int, b: int) -> int:
217
+ """
218
+ Get the modulus of two numbers.
219
+
220
+ Args:
221
+ a (int): the first number
222
+ b (int): the second number
223
+ """
224
+ return a % b
225
+
226
+
227
+ @tool
228
+ def power(a: float, b: float) -> float:
229
+ """
230
+ Get the power of two numbers.
231
+
232
+ Args:
233
+ a (float): the first number
234
+ b (float): the second number
235
+ """
236
+ return a**b
237
+
238
+
239
+ @tool
240
+ def square_root(a: float) -> float | complex:
241
+ """
242
+ Get the square root of a number.
243
+
244
+ Args:
245
+ a (float): the number to get the square root of
246
+ """
247
+ if a >= 0:
248
+ return a**0.5
249
+ return cmath.sqrt(a)
250
+
251
+
252
+ ### =============== DOCUMENT PROCESSING TOOLS =============== ###
253
+
254
+
255
+ @tool
256
+ def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
257
+ """
258
+ Save content to a file and return the path.
259
+
260
+ Args:
261
+ content (str): the content to save to the file
262
+ filename (str, optional): the name of the file. If not provided, a random name file will be created.
263
+ """
264
+ temp_dir = tempfile.gettempdir()
265
+ if filename is None:
266
+ temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
267
+ filepath = temp_file.name
268
+ else:
269
+ filepath = os.path.join(temp_dir, filename)
270
+
271
+ with open(filepath, "w") as f:
272
+ f.write(content)
273
+
274
+ return f"File saved to {filepath}. You can read this file to process its contents."
275
+
276
+
277
+ @tool
278
+ def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
279
+ """
280
+ Download a file from a URL and save it to a temporary location.
281
+
282
+ Args:
283
+ url (str): the URL of the file to download.
284
+ filename (str, optional): the name of the file. If not provided, a random name file will be created.
285
+ """
286
+ try:
287
+ # Parse URL to get filename if not provided
288
+ if not filename:
289
+ path = urlparse(url).path
290
+ filename = os.path.basename(path)
291
+ if not filename:
292
+ filename = f"downloaded_{uuid.uuid4().hex[:8]}"
293
+
294
+ # Create temporary file
295
+ temp_dir = tempfile.gettempdir()
296
+ filepath = os.path.join(temp_dir, filename)
297
+
298
+ # Download the file
299
+ response = requests.get(url, stream=True)
300
+ response.raise_for_status()
301
+
302
+ # Save the file
303
+ with open(filepath, "wb") as f:
304
+ for chunk in response.iter_content(chunk_size=8192):
305
+ f.write(chunk)
306
+
307
+ return f"File downloaded to {filepath}. You can read this file to process its contents."
308
+ except Exception as e:
309
+ return f"Error downloading file: {str(e)}"
310
+
311
+
312
+ @tool
313
+ def extract_text_from_image(image_path: str) -> str:
314
+ """
315
+ Extract text from an image using OCR library pytesseract (if available).
316
+
317
+ Args:
318
+ image_path (str): the path to the image file.
319
+ """
320
+ try:
321
+ # Open the image
322
+ image = Image.open(image_path)
323
+
324
+ # Extract text from the image
325
+ text = pytesseract.image_to_string(image)
326
+
327
+ return f"Extracted text from image:\n\n{text}"
328
+ except Exception as e:
329
+ return f"Error extracting text from image: {str(e)}"
330
+
331
+
332
+ @tool
333
+ def analyze_csv_file(file_path: str, query: str) -> str:
334
+ """
335
+ Analyze a CSV file using pandas and answer a question about it.
336
+
337
+ Args:
338
+ file_path (str): the path to the CSV file.
339
+ query (str): Question about the data
340
+ """
341
+ try:
342
+ # Read the CSV file
343
+ df = pd.read_csv(file_path)
344
+
345
+ # Run various analyses based on the query
346
+ result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
347
+ result += f"Columns: {', '.join(df.columns)}\n\n"
348
+
349
+ # Add summary statistics
350
+ result += "Summary statistics:\n"
351
+ result += str(df.describe())
352
+
353
+ return result
354
+
355
+ except Exception as e:
356
+ return f"Error analyzing CSV file: {str(e)}"
357
+
358
+
359
+ @tool
360
+ def analyze_excel_file(file_path: str, query: str) -> str:
361
+ """
362
+ Analyze an Excel file using pandas and answer a question about it.
363
+
364
+ Args:
365
+ file_path (str): the path to the Excel file.
366
+ query (str): Question about the data
367
+ """
368
+ try:
369
+ # Read the Excel file
370
+ df = pd.read_excel(file_path)
371
+
372
+ # Run various analyses based on the query
373
+ result = (
374
+ f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
375
+ )
376
+ result += f"Columns: {', '.join(df.columns)}\n\n"
377
+
378
+ # Add summary statistics
379
+ result += "Summary statistics:\n"
380
+ result += str(df.describe())
381
+
382
+ return result
383
+
384
+ except Exception as e:
385
+ return f"Error analyzing Excel file: {str(e)}"
386
+
387
+
388
+ ### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
389
+
390
+
391
+ @tool
392
+ def analyze_image(image_base64: str) -> Dict[str, Any]:
393
+ """
394
+ Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
395
+
396
+ Args:
397
+ image_base64 (str): Base64 encoded image string
398
+
399
+ Returns:
400
+ Dictionary with analysis result
401
+ """
402
+ try:
403
+ img = decode_image(image_base64)
404
+ width, height = img.size
405
+ mode = img.mode
406
+
407
+ if mode in ("RGB", "RGBA"):
408
+ arr = np.array(img)
409
+ avg_colors = arr.mean(axis=(0, 1))
410
+ dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
411
+ brightness = avg_colors.mean()
412
+ color_analysis = {
413
+ "average_rgb": avg_colors.tolist(),
414
+ "brightness": brightness,
415
+ "dominant_color": dominant,
416
+ }
417
+ else:
418
+ color_analysis = {"note": f"No color analysis for mode {mode}"}
419
+
420
+ thumbnail = img.copy()
421
+ thumbnail.thumbnail((100, 100))
422
+ thumb_path = save_image(thumbnail, "thumbnails")
423
+ thumbnail_base64 = encode_image(thumb_path)
424
+
425
+ return {
426
+ "dimensions": (width, height),
427
+ "mode": mode,
428
+ "color_analysis": color_analysis,
429
+ "thumbnail": thumbnail_base64,
430
+ }
431
+ except Exception as e:
432
+ return {"error": str(e)}
433
+
434
+
435
+ @tool
436
+ def transform_image(
437
+ image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
438
+ ) -> Dict[str, Any]:
439
+ """
440
+ Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
441
+
442
+ Args:
443
+ image_base64 (str): Base64 encoded input image
444
+ operation (str): Transformation operation
445
+ params (Dict[str, Any], optional): Parameters for the operation
446
+
447
+ Returns:
448
+ Dictionary with transformed image (base64)
449
+ """
450
+ try:
451
+ img = decode_image(image_base64)
452
+ params = params or {}
453
+
454
+ if operation == "resize":
455
+ img = img.resize(
456
+ (
457
+ params.get("width", img.width // 2),
458
+ params.get("height", img.height // 2),
459
+ )
460
+ )
461
+ elif operation == "rotate":
462
+ img = img.rotate(params.get("angle", 90), expand=True)
463
+ elif operation == "crop":
464
+ img = img.crop(
465
+ (
466
+ params.get("left", 0),
467
+ params.get("top", 0),
468
+ params.get("right", img.width),
469
+ params.get("bottom", img.height),
470
+ )
471
+ )
472
+ elif operation == "flip":
473
+ if params.get("direction", "horizontal") == "horizontal":
474
+ img = img.transpose(Image.FLIP_LEFT_RIGHT)
475
+ else:
476
+ img = img.transpose(Image.FLIP_TOP_BOTTOM)
477
+ elif operation == "adjust_brightness":
478
+ img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
479
+ elif operation == "adjust_contrast":
480
+ img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
481
+ elif operation == "blur":
482
+ img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
483
+ elif operation == "sharpen":
484
+ img = img.filter(ImageFilter.SHARPEN)
485
+ elif operation == "grayscale":
486
+ img = img.convert("L")
487
+ else:
488
+ return {"error": f"Unknown operation: {operation}"}
489
+
490
+ result_path = save_image(img)
491
+ result_base64 = encode_image(result_path)
492
+ return {"transformed_image": result_base64}
493
+
494
+ except Exception as e:
495
+ return {"error": str(e)}
496
+
497
+
498
+ @tool
499
+ def draw_on_image(
500
+ image_base64: str, drawing_type: str, params: Dict[str, Any]
501
+ ) -> Dict[str, Any]:
502
+ """
503
+ Draw shapes (rectangle, circle, line) or text onto an image.
504
+
505
+ Args:
506
+ image_base64 (str): Base64 encoded input image
507
+ drawing_type (str): Drawing type
508
+ params (Dict[str, Any]): Drawing parameters
509
+
510
+ Returns:
511
+ Dictionary with result image (base64)
512
+ """
513
+ try:
514
+ img = decode_image(image_base64)
515
+ draw = ImageDraw.Draw(img)
516
+ color = params.get("color", "red")
517
+
518
+ if drawing_type == "rectangle":
519
+ draw.rectangle(
520
+ [params["left"], params["top"], params["right"], params["bottom"]],
521
+ outline=color,
522
+ width=params.get("width", 2),
523
+ )
524
+ elif drawing_type == "circle":
525
+ x, y, r = params["x"], params["y"], params["radius"]
526
+ draw.ellipse(
527
+ (x - r, y - r, x + r, y + r),
528
+ outline=color,
529
+ width=params.get("width", 2),
530
+ )
531
+ elif drawing_type == "line":
532
+ draw.line(
533
+ (
534
+ params["start_x"],
535
+ params["start_y"],
536
+ params["end_x"],
537
+ params["end_y"],
538
+ ),
539
+ fill=color,
540
+ width=params.get("width", 2),
541
+ )
542
+ elif drawing_type == "text":
543
+ font_size = params.get("font_size", 20)
544
+ try:
545
+ font = ImageFont.truetype("arial.ttf", font_size)
546
+ except IOError:
547
+ font = ImageFont.load_default()
548
+ draw.text(
549
+ (params["x"], params["y"]),
550
+ params.get("text", "Text"),
551
+ fill=color,
552
+ font=font,
553
+ )
554
+ else:
555
+ return {"error": f"Unknown drawing type: {drawing_type}"}
556
+
557
+ result_path = save_image(img)
558
+ result_base64 = encode_image(result_path)
559
+ return {"result_image": result_base64}
560
+
561
+ except Exception as e:
562
+ return {"error": str(e)}
563
+
564
+
565
+ @tool
566
+ def generate_simple_image(
567
+ image_type: str,
568
+ width: int = 500,
569
+ height: int = 500,
570
+ params: Optional[Dict[str, Any]] = None,
571
+ ) -> Dict[str, Any]:
572
+ """
573
+ Generate a simple image (gradient, noise, pattern, chart).
574
+
575
+ Args:
576
+ image_type (str): Type of image
577
+ width (int), height (int)
578
+ params (Dict[str, Any], optional): Specific parameters
579
+
580
+ Returns:
581
+ Dictionary with generated image (base64)
582
+ """
583
+ try:
584
+ params = params or {}
585
+
586
+ if image_type == "gradient":
587
+ direction = params.get("direction", "horizontal")
588
+ start_color = params.get("start_color", (255, 0, 0))
589
+ end_color = params.get("end_color", (0, 0, 255))
590
+
591
+ img = Image.new("RGB", (width, height))
592
+ draw = ImageDraw.Draw(img)
593
+
594
+ if direction == "horizontal":
595
+ for x in range(width):
596
+ r = int(
597
+ start_color[0] + (end_color[0] - start_color[0]) * x / width
598
+ )
599
+ g = int(
600
+ start_color[1] + (end_color[1] - start_color[1]) * x / width
601
+ )
602
+ b = int(
603
+ start_color[2] + (end_color[2] - start_color[2]) * x / width
604
+ )
605
+ draw.line([(x, 0), (x, height)], fill=(r, g, b))
606
+ else:
607
+ for y in range(height):
608
+ r = int(
609
+ start_color[0] + (end_color[0] - start_color[0]) * y / height
610
+ )
611
+ g = int(
612
+ start_color[1] + (end_color[1] - start_color[1]) * y / height
613
+ )
614
+ b = int(
615
+ start_color[2] + (end_color[2] - start_color[2]) * y / height
616
+ )
617
+ draw.line([(0, y), (width, y)], fill=(r, g, b))
618
+
619
+ elif image_type == "noise":
620
+ noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
621
+ img = Image.fromarray(noise_array, "RGB")
622
+
623
+ else:
624
+ return {"error": f"Unsupported image_type {image_type}"}
625
+
626
+ result_path = save_image(img)
627
+ result_base64 = encode_image(result_path)
628
+ return {"generated_image": result_base64}
629
+
630
+ except Exception as e:
631
+ return {"error": str(e)}
632
+
633
+
634
+ @tool
635
+ def combine_images(
636
+ images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
637
+ ) -> Dict[str, Any]:
638
+ """
639
+ Combine multiple images (collage, stack, blend).
640
+
641
+ Args:
642
+ images_base64 (List[str]): List of base64 images
643
+ operation (str): Combination type
644
+ params (Dict[str, Any], optional)
645
+
646
+ Returns:
647
+ Dictionary with combined image (base64)
648
+ """
649
+ try:
650
+ images = [decode_image(b64) for b64 in images_base64]
651
+ params = params or {}
652
+
653
+ if operation == "stack":
654
+ direction = params.get("direction", "horizontal")
655
+ if direction == "horizontal":
656
+ total_width = sum(img.width for img in images)
657
+ max_height = max(img.height for img in images)
658
+ new_img = Image.new("RGB", (total_width, max_height))
659
+ x = 0
660
+ for img in images:
661
+ new_img.paste(img, (x, 0))
662
+ x += img.width
663
+ else:
664
+ max_width = max(img.width for img in images)
665
+ total_height = sum(img.height for img in images)
666
+ new_img = Image.new("RGB", (max_width, total_height))
667
+ y = 0
668
+ for img in images:
669
+ new_img.paste(img, (0, y))
670
+ y += img.height
671
+ else:
672
+ return {"error": f"Unsupported combination operation {operation}"}
673
+
674
+ result_path = save_image(new_img)
675
+ result_base64 = encode_image(result_path)
676
+ return {"combined_image": result_base64}
677
+
678
+ except Exception as e:
679
+ return {"error": str(e)}
680
+
681
+
682
+ # load the system prompt from the file
683
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
684
+ system_prompt = f.read()
685
+ print(system_prompt)
686
+
687
+ # System message
688
+ sys_msg = SystemMessage(content=system_prompt)
689
+
690
+ # build a retriever
691
+ embeddings = HuggingFaceEmbeddings(
692
+ model_name="sentence-transformers/all-mpnet-base-v2"
693
+ ) # dim=768
694
+ supabase: Client = create_client(
695
+ os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
696
+ )
697
+ vector_store = SupabaseVectorStore(
698
+ client=supabase,
699
+ embedding=embeddings,
700
+ table_name="documents2",
701
+ query_name="match_documents_2",
702
+ )
703
+ create_retriever_tool = create_retriever_tool(
704
+ retriever=vector_store.as_retriever(),
705
+ name="Question Search",
706
+ description="A tool to retrieve similar questions from a vector store.",
707
+ )
708
+
709
+
710
+ tools = [
711
+ web_search,
712
+ wiki_search,
713
+ arxiv_search,
714
+ multiply,
715
+ add,
716
+ subtract,
717
+ divide,
718
+ modulus,
719
+ power,
720
+ square_root,
721
+ save_and_read_file,
722
+ download_file_from_url,
723
+ extract_text_from_image,
724
+ analyze_csv_file,
725
+ analyze_excel_file,
726
+ execute_code_multilang,
727
+ analyze_image,
728
+ transform_image,
729
+ draw_on_image,
730
+ generate_simple_image,
731
+ combine_images,
732
+ ]
733
+
734
+
735
+ # Build graph function
736
+ def build_graph(provider: str = "groq"):
737
+ """Build the graph"""
738
+ # Load environment variables from .env file
739
+ if provider == "groq":
740
+ # Groq https://console.groq.com/docs/models
741
+ llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
742
+ elif provider == "huggingface":
743
+ # TODO: Add huggingface endpoint
744
+ llm = ChatHuggingFace(
745
+ llm=HuggingFaceEndpoint(
746
+ repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
747
+ task="text-generation", # for chat‐style use β€œtext-generation”
748
+ max_new_tokens=1024,
749
+ do_sample=False,
750
+ repetition_penalty=1.03,
751
+ temperature=0,
752
+ ),
753
+ verbose=True,
754
+ )
755
+ else:
756
+ raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
757
+ # Bind tools to LLM
758
+ llm_with_tools = llm.bind_tools(tools)
759
+
760
+ # Node
761
+ def assistant(state: MessagesState):
762
+ """Assistant node"""
763
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
764
+
765
+ def retriever(state: MessagesState):
766
+ """Retriever node"""
767
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
768
+
769
+ if similar_question: # Check if the list is not empty
770
+ example_msg = HumanMessage(
771
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
772
+ )
773
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
774
+ else:
775
+ # Handle the case when no similar questions are found
776
+ return {"messages": [sys_msg] + state["messages"]}
777
+
778
+ builder = StateGraph(MessagesState)
779
+ builder.add_node("retriever", retriever)
780
+ builder.add_node("assistant", assistant)
781
+ builder.add_node("tools", ToolNode(tools))
782
+ builder.add_edge(START, "retriever")
783
+ builder.add_edge("retriever", "assistant")
784
+ builder.add_conditional_edges(
785
+ "assistant",
786
+ tools_condition,
787
+ )
788
+ builder.add_edge("tools", "assistant")
789
+
790
+ # Compile graph
791
+ return builder.compile()
792
+
793
+
794
+ # test
795
+ if __name__ == "__main__":
796
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
797
+ graph = build_graph(provider="groq")
798
+ messages = [HumanMessage(content=question)]
799
+ messages = graph.invoke({"messages": messages})
800
+ for m in messages["messages"]:
801
+ m.pretty_print()
app.py ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import time
3
+ import os
4
+ import base64
5
+ from typing import List, Tuple, Optional
6
+ from langchain_core.messages import HumanMessage
7
+ from agent import build_graph
8
+
9
+ class QnAChatbot:
10
+ """A Q&A chatbot interface for the agent."""
11
+
12
+ def __init__(self):
13
+ print("πŸ€– QnAChatbot initializing...")
14
+ print("πŸ”§ Building agent graph...")
15
+ self.graph = build_graph()
16
+ self.conversation_history = []
17
+ print("βœ… QnAChatbot initialized successfully")
18
+
19
+ def process_question(self, question: str, history: List[Tuple[str, str]], uploaded_files: Optional[List] = None) -> Tuple[str, List[Tuple[str, str]]]:
20
+ """Process a question and return the response with updated history."""
21
+ if not question.strip() and not uploaded_files:
22
+ print("⚠️ No question or files provided")
23
+ return "", history
24
+
25
+ try:
26
+ print(f"\n{'='*60}")
27
+ print(f"πŸ€– Processing new question...")
28
+ print(f"πŸ“ Question: {question[:100]}{'...' if len(question) > 100 else ''}")
29
+ print(f"πŸ“ Files uploaded: {len(uploaded_files) if uploaded_files else 0}")
30
+
31
+ # Handle uploaded files
32
+ file_context = ""
33
+ if uploaded_files:
34
+ print(f"πŸ“‚ Processing {len(uploaded_files)} uploaded file(s)...")
35
+ file_context = self._process_uploaded_files(uploaded_files)
36
+ if file_context:
37
+ original_question = question
38
+ question = f"{question}\n\n{file_context}" if question.strip() else file_context
39
+ print(f"πŸ“‹ File context added to question (length: {len(file_context)} chars)")
40
+
41
+ # Wrap the question in a HumanMessage
42
+ messages = [HumanMessage(content=question)]
43
+ print(f"πŸ”„ Invoking agent graph...")
44
+
45
+ # Get response from the agent
46
+ result = self.graph.invoke({"messages": messages})
47
+ print(f"πŸ“¨ Received {len(result['messages'])} message(s) from agent")
48
+
49
+ # Print all messages for debugging
50
+ for i, msg in enumerate(result['messages']):
51
+ print(f"πŸ“§ Message {i+1}: {type(msg).__name__}")
52
+ if hasattr(msg, 'content'):
53
+ content_preview = msg.content[:200] + "..." if len(msg.content) > 200 else msg.content
54
+ print(f" Content preview: {content_preview}")
55
+
56
+ answer = result['messages'][-1].content
57
+
58
+ # Clean up the answer if it starts with "Assistant: "
59
+ if answer.startswith("Assistant: "):
60
+ answer = answer[11:]
61
+ print("🧹 Cleaned 'Assistant: ' prefix from response")
62
+
63
+ # Update conversation history
64
+ history.append((question, answer))
65
+ print(f"βœ… Question processed successfully")
66
+ print(f"πŸ“Š Response length: {len(answer)} characters")
67
+ print(f"πŸ’¬ Total conversation history: {len(history)} exchanges")
68
+ print(f"{'='*60}\n")
69
+
70
+ return "", history
71
+
72
+ except Exception as e:
73
+ error_msg = f"Error processing question: {str(e)}"
74
+ print(f"❌ {error_msg}")
75
+ print(f"πŸ” Exception details: {type(e).__name__}: {str(e)}")
76
+ import traceback
77
+ print(f"πŸ“‹ Traceback:\n{traceback.format_exc()}")
78
+ history.append((question, error_msg))
79
+ print(f"{'='*60}\n")
80
+ return "", history
81
+
82
+ def _process_uploaded_files(self, uploaded_files: List) -> str:
83
+ """Process uploaded files and return context for the question."""
84
+ file_contexts = []
85
+
86
+ for file_path in uploaded_files:
87
+ if not file_path or not os.path.exists(file_path):
88
+ print(f"⚠️ Skipping invalid file path: {file_path}")
89
+ continue
90
+
91
+ try:
92
+ file_name = os.path.basename(file_path)
93
+ file_ext = os.path.splitext(file_name)[1].lower()
94
+ file_size = os.path.getsize(file_path)
95
+
96
+ print(f"πŸ“„ Processing file: {file_name} ({file_size} bytes, {file_ext})")
97
+
98
+ # Handle different file types
99
+ if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
100
+ # Image file - convert to base64
101
+ with open(file_path, 'rb') as f:
102
+ image_data = base64.b64encode(f.read()).decode('utf-8')
103
+ file_contexts.append(f"[UPLOADED IMAGE: {file_name}] - Base64 data: {image_data}")
104
+ print(f"πŸ–ΌοΈ Image converted to base64 ({len(image_data)} chars)")
105
+
106
+ elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css', '.json', '.xml']:
107
+ # Text file - read content
108
+ with open(file_path, 'r', encoding='utf-8') as f:
109
+ content = f.read()
110
+ file_contexts.append(f"[UPLOADED TEXT FILE: {file_name}]\nContent:\n{content}")
111
+ print(f"πŸ“ Text file content read ({len(content)} chars)")
112
+
113
+ elif file_ext in ['.csv']:
114
+ # CSV file - provide file path for analysis
115
+ file_contexts.append(f"[UPLOADED CSV FILE: {file_name}] - File path: {file_path}")
116
+ print(f"πŸ“Š CSV file prepared for analysis")
117
+
118
+ elif file_ext in ['.xlsx', '.xls']:
119
+ # Excel file - provide file path for analysis
120
+ file_contexts.append(f"[UPLOADED EXCEL FILE: {file_name}] - File path: {file_path}")
121
+ print(f"πŸ“ˆ Excel file prepared for analysis")
122
+
123
+ elif file_ext in ['.pdf']:
124
+ # PDF file - mention it's available
125
+ file_contexts.append(f"[UPLOADED PDF FILE: {file_name}] - File path: {file_path}")
126
+ print(f"πŸ“„ PDF file prepared for processing")
127
+
128
+ else:
129
+ # Other file types - just mention the file
130
+ file_contexts.append(f"[UPLOADED FILE: {file_name}] - File path: {file_path}")
131
+ print(f"πŸ“ Generic file prepared for processing")
132
+
133
+ except Exception as e:
134
+ error_msg = f"Error processing file {file_path}: {e}"
135
+ print(f"❌ {error_msg}")
136
+ print(f"πŸ” File processing error details: {type(e).__name__}: {str(e)}")
137
+ file_contexts.append(f"[ERROR PROCESSING FILE: {os.path.basename(file_path)}] - {str(e)}")
138
+
139
+ total_context = "\n\n".join(file_contexts) if file_contexts else ""
140
+ if total_context:
141
+ print(f"πŸ“‹ Total file context generated: {len(total_context)} characters")
142
+
143
+ return total_context
144
+
145
+ def clear_history(self):
146
+ """Clear the conversation history."""
147
+ print("🧹 Clearing conversation history...")
148
+ self.conversation_history = []
149
+ print("βœ… Conversation history cleared")
150
+ return []
151
+
152
+ def create_qna_interface():
153
+ """Create the Q&A chatbot interface."""
154
+
155
+ print("πŸš€ Creating Q&A interface...")
156
+ # Initialize the chatbot
157
+ chatbot = QnAChatbot()
158
+ print("🎨 Setting up UI components...")
159
+
160
+ # Enhanced Custom CSS for modern, professional styling
161
+ custom_css = """
162
+ /* Import Google Fonts */
163
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&family=JetBrains+Mono:wght@400;500&display=swap');
164
+
165
+ /* CSS Variables for Theme Support */
166
+ :root {
167
+ --primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
168
+ --secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
169
+ --success-gradient: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
170
+ --warning-gradient: linear-gradient(135deg, #43e97b 0%, #38f9d7 100%);
171
+ --glass-bg: rgba(255, 255, 255, 0.95);
172
+ --glass-border: rgba(255, 255, 255, 0.2);
173
+ --text-primary: #2d3748;
174
+ --text-secondary: #4a5568;
175
+ --text-light: #718096;
176
+ --bg-light: #f7fafc;
177
+ --bg-card: #ffffff;
178
+ --shadow-sm: 0 2px 10px rgba(0, 0, 0, 0.05);
179
+ --shadow-md: 0 10px 30px rgba(0, 0, 0, 0.1);
180
+ --shadow-lg: 0 20px 40px rgba(0, 0, 0, 0.15);
181
+ --border-radius: 12px;
182
+ --border-radius-lg: 20px;
183
+ --transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
184
+ }
185
+
186
+ /* Global Styles */
187
+ * {
188
+ font-family: 'Inter', sans-serif !important;
189
+ box-sizing: border-box !important;
190
+ }
191
+
192
+ /* Main Container with Enhanced Background */
193
+ .gradio-container {
194
+ max-width: 1400px !important;
195
+ margin: 0 auto !important;
196
+ background:
197
+ radial-gradient(circle at 20% 50%, rgba(120, 119, 198, 0.3), transparent 50%),
198
+ radial-gradient(circle at 80% 20%, rgba(255, 119, 198, 0.3), transparent 50%),
199
+ radial-gradient(circle at 40% 80%, rgba(120, 219, 255, 0.3), transparent 50%),
200
+ var(--primary-gradient) !important;
201
+ min-height: 100vh !important;
202
+ padding: 20px !important;
203
+ position: relative !important;
204
+ overflow-x: hidden !important;
205
+ }
206
+
207
+ /* Animated Background Particles */
208
+ .gradio-container::before {
209
+ content: '' !important;
210
+ position: fixed !important;
211
+ top: 0 !important;
212
+ left: 0 !important;
213
+ width: 100% !important;
214
+ height: 100% !important;
215
+ background: url("data:image/svg+xml,%3Csvg width='60' height='60' viewBox='0 0 60 60' xmlns='http://www.w3.org/2000/svg'%3E%3Cg fill='none' fill-rule='evenodd'%3E%3Cg fill='%23ffffff' fill-opacity='0.05'%3E%3Ccircle cx='7' cy='7' r='1'/%3E%3Ccircle cx='53' cy='7' r='1'/%3E%3Ccircle cx='7' cy='53' r='1'/%3E%3Ccircle cx='53' cy='53' r='1'/%3E%3C/g%3E%3C/g%3E%3C/svg%3E") !important;
216
+ animation: float 20s ease-in-out infinite !important;
217
+ pointer-events: none !important;
218
+ z-index: 0 !important;
219
+ }
220
+
221
+ /* Main Content Area with Glass Effect */
222
+ .main-content {
223
+ background: var(--glass-bg) !important;
224
+ backdrop-filter: blur(20px) !important;
225
+ -webkit-backdrop-filter: blur(20px) !important;
226
+ border-radius: var(--border-radius-lg) !important;
227
+ box-shadow:
228
+ var(--shadow-lg),
229
+ inset 0 1px 0 var(--glass-border) !important;
230
+ padding: 40px !important;
231
+ margin: 20px 0 !important;
232
+ position: relative !important;
233
+ z-index: 1 !important;
234
+ border: 1px solid var(--glass-border) !important;
235
+ transition: var(--transition) !important;
236
+ }
237
+
238
+ .main-content:hover {
239
+ transform: translateY(-2px) !important;
240
+ box-shadow:
241
+ 0 25px 50px rgba(0, 0, 0, 0.15),
242
+ inset 0 1px 0 var(--glass-border) !important;
243
+ }
244
+
245
+ /* Enhanced Header with Animations */
246
+ .markdown h1 {
247
+ background: var(--primary-gradient) !important;
248
+ -webkit-background-clip: text !important;
249
+ -webkit-text-fill-color: transparent !important;
250
+ background-clip: text !important;
251
+ font-size: 3rem !important;
252
+ font-weight: 800 !important;
253
+ text-align: center !important;
254
+ margin-bottom: 1.5rem !important;
255
+ position: relative !important;
256
+ animation: titleGlow 3s ease-in-out infinite alternate !important;
257
+ }
258
+
259
+ .markdown h1::after {
260
+ content: '' !important;
261
+ position: absolute !important;
262
+ bottom: -10px !important;
263
+ left: 50% !important;
264
+ transform: translateX(-50%) !important;
265
+ width: 100px !important;
266
+ height: 4px !important;
267
+ background: var(--primary-gradient) !important;
268
+ border-radius: 2px !important;
269
+ animation: pulse 2s ease-in-out infinite !important;
270
+ }
271
+
272
+ /* Enhanced Chat Interface */
273
+ .chatbot {
274
+ border: none !important;
275
+ border-radius: var(--border-radius) !important;
276
+ box-shadow: var(--shadow-md) !important;
277
+ background: var(--bg-card) !important;
278
+ overflow: hidden !important;
279
+ position: relative !important;
280
+ }
281
+
282
+ /* Chat Messages with Better Styling */
283
+ .chatbot .message-wrap {
284
+ padding: 20px !important;
285
+ margin: 15px !important;
286
+ border-radius: 18px !important;
287
+ max-width: 85% !important;
288
+ animation: messageSlideIn 0.5s cubic-bezier(0.4, 0, 0.2, 1) !important;
289
+ position: relative !important;
290
+ word-wrap: break-word !important;
291
+ }
292
+
293
+ .chatbot .message.user {
294
+ background: var(--primary-gradient) !important;
295
+ color: white !important;
296
+ margin-left: auto !important;
297
+ margin-right: 15px !important;
298
+ box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
299
+ border-bottom-right-radius: 5px !important;
300
+ }
301
+
302
+ .chatbot .message.user::before {
303
+ content: 'πŸ§‘β€πŸ’»' !important;
304
+ position: absolute !important;
305
+ top: -25px !important;
306
+ right: 10px !important;
307
+ font-size: 16px !important;
308
+ background: var(--bg-card) !important;
309
+ padding: 5px 8px !important;
310
+ border-radius: 20px !important;
311
+ box-shadow: var(--shadow-sm) !important;
312
+ }
313
+
314
+ .chatbot .message.bot {
315
+ background: linear-gradient(135deg, #f8f9ff 0%, #e8eeff 100%) !important;
316
+ color: var(--text-primary) !important;
317
+ margin-right: auto !important;
318
+ margin-left: 15px !important;
319
+ border: 1px solid #e2e8f0 !important;
320
+ box-shadow: var(--shadow-sm) !important;
321
+ border-bottom-left-radius: 5px !important;
322
+ }
323
+
324
+ .chatbot .message.bot::before {
325
+ content: 'πŸ€–' !important;
326
+ position: absolute !important;
327
+ top: -25px !important;
328
+ left: 10px !important;
329
+ font-size: 16px !important;
330
+ background: var(--bg-card) !important;
331
+ padding: 5px 8px !important;
332
+ border-radius: 20px !important;
333
+ box-shadow: var(--shadow-sm) !important;
334
+ }
335
+
336
+ /* Typing Indicator */
337
+ .typing-indicator {
338
+ display: flex !important;
339
+ align-items: center !important;
340
+ padding: 15px 20px !important;
341
+ margin: 15px !important;
342
+ background: linear-gradient(135deg, #f8f9ff 0%, #e8eeff 100%) !important;
343
+ border-radius: 18px !important;
344
+ max-width: 85% !important;
345
+ margin-right: auto !important;
346
+ margin-left: 15px !important;
347
+ border: 1px solid #e2e8f0 !important;
348
+ animation: messageSlideIn 0.5s cubic-bezier(0.4, 0, 0.2, 1) !important;
349
+ }
350
+
351
+ .typing-dots {
352
+ display: flex !important;
353
+ align-items: center !important;
354
+ gap: 4px !important;
355
+ }
356
+
357
+ .typing-dots span {
358
+ width: 8px !important;
359
+ height: 8px !important;
360
+ border-radius: 50% !important;
361
+ background: var(--text-light) !important;
362
+ animation: typingDots 1.4s ease-in-out infinite both !important;
363
+ }
364
+
365
+ .typing-dots span:nth-child(1) { animation-delay: -0.32s !important; }
366
+ .typing-dots span:nth-child(2) { animation-delay: -0.16s !important; }
367
+ .typing-dots span:nth-child(3) { animation-delay: 0s !important; }
368
+
369
+ /* Enhanced Input Areas */
370
+ .textbox input, .textbox textarea {
371
+ border: 2px solid #e2e8f0 !important;
372
+ border-radius: var(--border-radius) !important;
373
+ padding: 18px 24px !important;
374
+ font-size: 16px !important;
375
+ line-height: 1.5 !important;
376
+ transition: var(--transition) !important;
377
+ background: var(--bg-card) !important;
378
+ box-shadow: var(--shadow-sm) !important;
379
+ font-family: 'Inter', sans-serif !important;
380
+ }
381
+
382
+ .textbox input:focus, .textbox textarea:focus {
383
+ border-color: #667eea !important;
384
+ box-shadow:
385
+ 0 0 0 4px rgba(102, 126, 234, 0.1),
386
+ var(--shadow-md) !important;
387
+ outline: none !important;
388
+ transform: translateY(-1px) !important;
389
+ background: #ffffff !important;
390
+ }
391
+
392
+ /* Enhanced Buttons with Micro-interactions */
393
+ .btn {
394
+ border-radius: var(--border-radius) !important;
395
+ font-weight: 600 !important;
396
+ text-transform: none !important;
397
+ letter-spacing: 0.3px !important;
398
+ transition: var(--transition) !important;
399
+ border: none !important;
400
+ box-shadow: var(--shadow-sm) !important;
401
+ padding: 14px 28px !important;
402
+ font-size: 16px !important;
403
+ position: relative !important;
404
+ overflow: hidden !important;
405
+ cursor: pointer !important;
406
+ }
407
+
408
+ .btn::before {
409
+ content: '' !important;
410
+ position: absolute !important;
411
+ top: 0 !important;
412
+ left: -100% !important;
413
+ width: 100% !important;
414
+ height: 100% !important;
415
+ background: linear-gradient(90deg, transparent, rgba(255,255,255,0.3), transparent) !important;
416
+ transition: left 0.5s !important;
417
+ }
418
+
419
+ .btn:hover::before {
420
+ left: 100% !important;
421
+ }
422
+
423
+ .btn-primary {
424
+ background: var(--primary-gradient) !important;
425
+ color: white !important;
426
+ box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3) !important;
427
+ }
428
+
429
+ .btn-primary:hover {
430
+ transform: translateY(-3px) scale(1.02) !important;
431
+ box-shadow: 0 12px 35px rgba(102, 126, 234, 0.4) !important;
432
+ }
433
+
434
+ .btn-primary:active {
435
+ transform: translateY(-1px) scale(0.98) !important;
436
+ }
437
+
438
+ .btn-secondary {
439
+ background: linear-gradient(135deg, #f7fafc 0%, #edf2f7 100%) !important;
440
+ color: var(--text-secondary) !important;
441
+ border: 1px solid #e2e8f0 !important;
442
+ }
443
+
444
+ .btn-secondary:hover {
445
+ transform: translateY(-2px) !important;
446
+ background: linear-gradient(135deg, #edf2f7 0%, #e2e8f0 100%) !important;
447
+ box-shadow: var(--shadow-md) !important;
448
+ }
449
+
450
+ /* Enhanced File Upload with Drag & Drop Animation */
451
+ .file-upload {
452
+ border: 3px dashed #cbd5e0 !important;
453
+ border-radius: var(--border-radius) !important;
454
+ background: linear-gradient(135deg, #f7fafc 0%, #edf2f7 100%) !important;
455
+ padding: 40px !important;
456
+ text-align: center !important;
457
+ transition: var(--transition) !important;
458
+ position: relative !important;
459
+ overflow: hidden !important;
460
+ cursor: pointer !important;
461
+ }
462
+
463
+ .file-upload:hover {
464
+ border-color: #667eea !important;
465
+ background: linear-gradient(135deg, #edf2f7 0%, #e2e8f0 100%) !important;
466
+ transform: translateY(-2px) scale(1.01) !important;
467
+ box-shadow: var(--shadow-md) !important;
468
+ }
469
+
470
+ .file-upload::before {
471
+ content: 'πŸ“' !important;
472
+ font-size: 4rem !important;
473
+ display: block !important;
474
+ margin-bottom: 15px !important;
475
+ animation: fileFloat 3s ease-in-out infinite !important;
476
+ }
477
+
478
+ .file-upload::after {
479
+ content: 'Drag files here or click to browse' !important;
480
+ position: absolute !important;
481
+ bottom: 15px !important;
482
+ left: 50% !important;
483
+ transform: translateX(-50%) !important;
484
+ font-size: 14px !important;
485
+ color: var(--text-light) !important;
486
+ font-weight: 500 !important;
487
+ }
488
+
489
+ /* Enhanced Examples Section */
490
+ .examples {
491
+ background: linear-gradient(135deg, #f8f9ff 0%, #e8eeff 100%) !important;
492
+ border-radius: var(--border-radius) !important;
493
+ padding: 30px !important;
494
+ margin: 25px 0 !important;
495
+ border: 1px solid #e2e8f0 !important;
496
+ box-shadow: var(--shadow-sm) !important;
497
+ position: relative !important;
498
+ }
499
+
500
+ .examples::before {
501
+ content: 'πŸ’‘' !important;
502
+ position: absolute !important;
503
+ top: -15px !important;
504
+ left: 30px !important;
505
+ background: var(--bg-card) !important;
506
+ padding: 10px !important;
507
+ border-radius: 50% !important;
508
+ font-size: 20px !important;
509
+ box-shadow: var(--shadow-sm) !important;
510
+ }
511
+
512
+ .examples h3 {
513
+ color: #667eea !important;
514
+ font-weight: 700 !important;
515
+ margin-bottom: 20px !important;
516
+ font-size: 1.3rem !important;
517
+ margin-left: 20px !important;
518
+ }
519
+
520
+ /* Feature Cards with Hover Effects */
521
+ .feature-card {
522
+ background: var(--bg-card) !important;
523
+ border-radius: var(--border-radius) !important;
524
+ padding: 25px !important;
525
+ margin: 15px 0 !important;
526
+ box-shadow: var(--shadow-sm) !important;
527
+ border-left: 4px solid transparent !important;
528
+ transition: var(--transition) !important;
529
+ cursor: pointer !important;
530
+ }
531
+
532
+ .feature-card:hover {
533
+ transform: translateY(-5px) translateX(5px) !important;
534
+ box-shadow: var(--shadow-md) !important;
535
+ }
536
+
537
+ .feature-card.research {
538
+ border-left-color: #667eea !important;
539
+ }
540
+
541
+ .feature-card.code {
542
+ border-left-color: #48bb78 !important;
543
+ }
544
+
545
+ .feature-card.data {
546
+ border-left-color: #ed8936 !important;
547
+ }
548
+
549
+ .feature-card.image {
550
+ border-left-color: #dd6b20 !important;
551
+ }
552
+
553
+ /* Status Indicator with Pulse Animation */
554
+ .status-indicator {
555
+ display: inline-block !important;
556
+ width: 12px !important;
557
+ height: 12px !important;
558
+ border-radius: 50% !important;
559
+ background: radial-gradient(circle, #48bb78, #38a169) !important;
560
+ margin-right: 12px !important;
561
+ animation: statusPulse 2s ease-in-out infinite !important;
562
+ box-shadow: 0 0 0 0 rgba(72, 187, 120, 0.7) !important;
563
+ }
564
+
565
+ /* Enhanced Footer */
566
+ .footer {
567
+ background: var(--glass-bg) !important;
568
+ backdrop-filter: blur(10px) !important;
569
+ border-radius: var(--border-radius) !important;
570
+ padding: 30px !important;
571
+ margin-top: 40px !important;
572
+ text-align: center !important;
573
+ border: 1px solid var(--glass-border) !important;
574
+ box-shadow: var(--shadow-sm) !important;
575
+ }
576
+
577
+ /* Advanced Animations */
578
+ @keyframes titleGlow {
579
+ 0%, 100% { text-shadow: 0 0 20px rgba(102, 126, 234, 0.5); }
580
+ 50% { text-shadow: 0 0 30px rgba(102, 126, 234, 0.8), 0 0 40px rgba(118, 75, 162, 0.6); }
581
+ }
582
+
583
+ @keyframes messageSlideIn {
584
+ from {
585
+ opacity: 0;
586
+ transform: translateY(30px) scale(0.95);
587
+ }
588
+ to {
589
+ opacity: 1;
590
+ transform: translateY(0) scale(1);
591
+ }
592
+ }
593
+
594
+ @keyframes typingDots {
595
+ 0%, 80%, 100% { transform: scale(0.8); opacity: 0.5; }
596
+ 40% { transform: scale(1.2); opacity: 1; }
597
+ }
598
+
599
+ @keyframes fileFloat {
600
+ 0%, 100% { transform: translateY(0px); }
601
+ 50% { transform: translateY(-10px); }
602
+ }
603
+
604
+ @keyframes statusPulse {
605
+ 0% {
606
+ transform: scale(0.95);
607
+ box-shadow: 0 0 0 0 rgba(72, 187, 120, 0.7);
608
+ }
609
+ 70% {
610
+ transform: scale(1);
611
+ box-shadow: 0 0 0 10px rgba(72, 187, 120, 0);
612
+ }
613
+ 100% {
614
+ transform: scale(0.95);
615
+ box-shadow: 0 0 0 0 rgba(72, 187, 120, 0);
616
+ }
617
+ }
618
+
619
+ @keyframes float {
620
+ 0%, 100% { transform: translateY(0px) rotate(0deg); }
621
+ 33% { transform: translateY(-10px) rotate(1deg); }
622
+ 66% { transform: translateY(-5px) rotate(-1deg); }
623
+ }
624
+
625
+ @keyframes pulse {
626
+ 0%, 100% { transform: scale(1) scaleX(1); }
627
+ 50% { transform: scale(1.05) scaleX(1.1); }
628
+ }
629
+
630
+ /* Responsive Design Enhancements */
631
+ @media (max-width: 1024px) {
632
+ .gradio-container { padding: 15px !important; }
633
+ .main-content { padding: 25px !important; margin: 15px 0 !important; }
634
+ .markdown h1 { font-size: 2.5rem !important; }
635
+ }
636
+
637
+ @media (max-width: 768px) {
638
+ .gradio-container { padding: 10px !important; }
639
+ .main-content { padding: 20px !important; margin: 10px 0 !important; }
640
+ .chatbot .message-wrap { max-width: 90% !important; margin: 10px !important; padding: 15px !important; }
641
+ .markdown h1 { font-size: 2rem !important; }
642
+ .btn { padding: 12px 20px !important; font-size: 14px !important; }
643
+ .file-upload { padding: 30px 20px !important; }
644
+ }
645
+
646
+ @media (max-width: 480px) {
647
+ .markdown h1 { font-size: 1.8rem !important; }
648
+ .chatbot .message-wrap { margin: 8px !important; padding: 12px !important; }
649
+ .main-content { padding: 15px !important; }
650
+ }
651
+
652
+ /* Custom Scrollbar Enhancement */
653
+ ::-webkit-scrollbar { width: 12px; }
654
+ ::-webkit-scrollbar-track {
655
+ background: rgba(241, 241, 241, 0.5);
656
+ border-radius: 6px;
657
+ }
658
+ ::-webkit-scrollbar-thumb {
659
+ background: var(--primary-gradient);
660
+ border-radius: 6px;
661
+ border: 2px solid rgba(255, 255, 255, 0.2);
662
+ }
663
+ ::-webkit-scrollbar-thumb:hover {
664
+ background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%);
665
+ }
666
+
667
+ /* Loading States */
668
+ .loading { animation: pulse 2s infinite !important; }
669
+ .processing {
670
+ position: relative !important;
671
+ overflow: hidden !important;
672
+ }
673
+ .processing::after {
674
+ content: '' !important;
675
+ position: absolute !important;
676
+ top: 0 !important;
677
+ left: -100% !important;
678
+ width: 100% !important;
679
+ height: 100% !important;
680
+ background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent) !important;
681
+ animation: shimmer 2s infinite !important;
682
+ }
683
+
684
+ @keyframes shimmer {
685
+ 0% { left: -100%; }
686
+ 100% { left: 100%; }
687
+ }
688
+
689
+ /* Dark mode support (future enhancement) */
690
+ @media (prefers-color-scheme: dark) {
691
+ :root {
692
+ --glass-bg: rgba(26, 32, 44, 0.95);
693
+ --text-primary: #e2e8f0;
694
+ --text-secondary: #cbd5e0;
695
+ --text-light: #a0aec0;
696
+ --bg-card: #2d3748;
697
+ --bg-light: #1a202c;
698
+ }
699
+ }
700
+ """
701
+
702
+ with gr.Blocks(css=custom_css, title="GAIA Agent - Q&A Chatbot", theme=gr.themes.Soft()) as demo:
703
+ # Header with enhanced styling
704
+ with gr.Row(elem_classes="main-content"):
705
+ gr.Markdown(
706
+ """
707
+ <h1 align="center">πŸ€– GAIA Agent - Advanced Q&A Chatbot</h1>
708
+
709
+ Welcome to the **GAIA Agent Q&A interface**! Ask me anything and I'll help you find the answer using my various tools and capabilities.
710
+
711
+ ### 🌟 **What I can do:**
712
+
713
+ <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
714
+ <div class="feature-card research" style="background: linear-gradient(135deg, #f8f9ff 0%, #e8eeff 100%); padding: 25px; border-radius: 12px; border-left: 4px solid #667eea; cursor: pointer; transition: all 0.3s ease;">
715
+ <div style="display: flex; align-items: center; margin-bottom: 10px;">
716
+ <span style="font-size: 2rem; margin-right: 15px;">πŸ”</span>
717
+ <strong style="font-size: 1.1rem; color: #667eea;">Research & Search</strong>
718
+ </div>
719
+ <p style="margin: 0; color: #718096; font-size: 14px; line-height: 1.5;">Web search, Wikipedia, academic papers, arXiv research</p>
720
+ </div>
721
+ <div class="feature-card code" style="background: linear-gradient(135deg, #f0fff4 0%, #c6f6d5 100%); padding: 25px; border-radius: 12px; border-left: 4px solid #48bb78; cursor: pointer; transition: all 0.3s ease;">
722
+ <div style="display: flex; align-items: center; margin-bottom: 10px;">
723
+ <span style="font-size: 2rem; margin-right: 15px;">πŸ’»</span>
724
+ <strong style="font-size: 1.1rem; color: #48bb78;">Code Execution</strong>
725
+ </div>
726
+ <p style="margin: 0; color: #718096; font-size: 14px; line-height: 1.5;">Python, Bash, SQL, C, Java with real-time results</p>
727
+ </div>
728
+ <div class="feature-card data" style="background: linear-gradient(135deg, #fffaf0 0%, #fbd38d 100%); padding: 25px; border-radius: 12px; border-left: 4px solid #ed8936; cursor: pointer; transition: all 0.3s ease;">
729
+ <div style="display: flex; align-items: center; margin-bottom: 10px;">
730
+ <span style="font-size: 2rem; margin-right: 15px;">πŸ“Š</span>
731
+ <strong style="font-size: 1.1rem; color: #ed8936;">Data Analysis</strong>
732
+ </div>
733
+ <p style="margin: 0; color: #718096; font-size: 14px; line-height: 1.5;">CSV, Excel, visualizations, statistical analysis</p>
734
+ </div>
735
+ <div class="feature-card image" style="background: linear-gradient(135deg, #fef5e7 0%, #f6ad55 100%); padding: 25px; border-radius: 12px; border-left: 4px solid #dd6b20; cursor: pointer; transition: all 0.3s ease;">
736
+ <div style="display: flex; align-items: center; margin-bottom: 10px;">
737
+ <span style="font-size: 2rem; margin-right: 15px;">πŸ–ΌοΈ</span>
738
+ <strong style="font-size: 1.1rem; color: #dd6b20;">Image Processing</strong>
739
+ </div>
740
+ <p style="margin: 0; color: #718096; font-size: 14px; line-height: 1.5;">Analysis, OCR, transformations, generation</p>
741
+ </div>
742
+ </div>
743
+
744
+ ---
745
+ """
746
+ )
747
+
748
+ # Chat interface with enhanced styling
749
+ with gr.Row(elem_classes="main-content"):
750
+ with gr.Column(scale=1):
751
+ chatbot_interface = gr.Chatbot(
752
+ label="πŸ’¬ Conversation",
753
+ height=600,
754
+ show_label=True,
755
+ container=True,
756
+ bubble_full_width=False,
757
+ elem_classes="chatbot"
758
+ )
759
+
760
+ # File upload section with enhanced styling
761
+ with gr.Row(elem_classes="main-content"):
762
+ with gr.Column():
763
+ file_upload = gr.File(
764
+ label="πŸ“ Upload Files - Drag & drop or click to upload images, documents, CSV, Excel files, etc.",
765
+ file_count="multiple",
766
+ file_types=[
767
+ ".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp", # Images
768
+ ".txt", ".md", ".py", ".js", ".html", ".css", ".json", ".xml", # Text files
769
+ ".csv", ".xlsx", ".xls", # Data files
770
+ ".pdf", ".doc", ".docx" # Documents
771
+ ],
772
+ height=120,
773
+ elem_classes="file-upload"
774
+ )
775
+
776
+ # Input and buttons with enhanced styling
777
+ with gr.Row(elem_classes="main-content"):
778
+ with gr.Column(scale=8):
779
+ question_input = gr.Textbox(
780
+ label="πŸ’­ Ask a question",
781
+ placeholder="Type your question here or upload files above... (e.g., 'What is the capital of France?', 'Analyze this image', 'Summarize this document')",
782
+ lines=3,
783
+ max_lines=5,
784
+ elem_classes="textbox"
785
+ )
786
+ with gr.Column(scale=2, min_width=120):
787
+ submit_btn = gr.Button("πŸš€ Send", variant="primary", size="lg", elem_classes="btn btn-primary")
788
+
789
+ with gr.Row(elem_classes="main-content"):
790
+ with gr.Column(scale=1):
791
+ clear_btn = gr.Button("🧹 Clear History", variant="secondary", elem_classes="btn btn-secondary")
792
+ with gr.Column(scale=1):
793
+ clear_files_btn = gr.Button("πŸ—‘οΈ Clear Files", variant="secondary", elem_classes="btn btn-secondary")
794
+ with gr.Column(scale=1):
795
+ export_btn = gr.Button("πŸ’Ύ Export Chat", variant="secondary", elem_classes="btn btn-secondary")
796
+
797
+ # Hidden download component for chat export
798
+ download_file = gr.File(visible=False)
799
+
800
+ with gr.Row(elem_classes="main-content"):
801
+ with gr.Column():
802
+ gr.Examples(
803
+ examples=[
804
+ "What is the current population of Tokyo?",
805
+ "Calculate the square root of 144",
806
+ "Write a Python function to sort a list",
807
+ "What are the latest developments in AI?",
808
+ "Explain quantum computing in simple terms",
809
+ ],
810
+ inputs=question_input,
811
+ label="🌐 General Questions"
812
+ )
813
+ with gr.Column():
814
+ gr.Examples(
815
+ examples=[
816
+ "Search for recent papers on machine learning",
817
+ "What is the weather like today?",
818
+ "Create a simple bar chart using Python",
819
+ "Convert 100 USD to EUR",
820
+ "What are the benefits of renewable energy?",
821
+ ],
822
+ inputs=question_input,
823
+ label="πŸ”¬ Research & Analysis"
824
+ )
825
+ with gr.Column():
826
+ gr.Examples(
827
+ examples=[
828
+ "Analyze this image and describe what you see",
829
+ "Extract text from this image using OCR",
830
+ "Summarize the content of this document",
831
+ "Analyze the data in this CSV file",
832
+ "What insights can you find in this Excel file?",
833
+ ],
834
+ inputs=question_input,
835
+ label="πŸ“ File Analysis"
836
+ )
837
+
838
+ # Event handlers
839
+ def submit_question(question, history, files):
840
+ print(f"🎯 UI: Submit button clicked")
841
+ print(f"πŸ“ UI: Question length: {len(question) if question else 0}")
842
+ print(f"πŸ“ UI: Files count: {len(files) if files else 0}")
843
+ result_question, result_history = chatbot.process_question(question, history, files)
844
+ print(f"πŸ”„ UI: Returning results and clearing files")
845
+ return result_question, result_history, None # Clear files after processing
846
+
847
+ def clear_conversation():
848
+ print("🧹 UI: Clear conversation button clicked")
849
+ return chatbot.clear_history()
850
+
851
+ def clear_files():
852
+ print("πŸ—‘οΈ UI: Clear files button clicked")
853
+ return None
854
+
855
+ def export_conversation(history):
856
+ """Export conversation history to a text file"""
857
+ print("πŸ’Ύ UI: Export conversation button clicked")
858
+ if not history:
859
+ print("⚠️ No conversation to export")
860
+ return None
861
+
862
+ try:
863
+ import tempfile
864
+ import datetime
865
+
866
+ # Create export content
867
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
868
+ export_content = f"# GAIA Agent Conversation Export\n"
869
+ export_content += f"Export Date: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
870
+ export_content += f"Total Messages: {len(history)}\n\n"
871
+ export_content += "=" * 50 + "\n\n"
872
+
873
+ for i, (user_msg, bot_msg) in enumerate(history, 1):
874
+ export_content += f"## Message {i}\n\n"
875
+ export_content += f"**User:** {user_msg}\n\n"
876
+ export_content += f"**Assistant:** {bot_msg}\n\n"
877
+ export_content += "-" * 30 + "\n\n"
878
+
879
+ # Save to temporary file
880
+ temp_file = tempfile.NamedTemporaryFile(
881
+ mode='w',
882
+ suffix=f'_gaia_chat_export_{timestamp}.md',
883
+ delete=False,
884
+ encoding='utf-8'
885
+ )
886
+ temp_file.write(export_content)
887
+ temp_file.close()
888
+
889
+ print(f"πŸ“„ Conversation exported to: {temp_file.name}")
890
+ return temp_file.name
891
+
892
+ except Exception as e:
893
+ print(f"❌ Error exporting conversation: {e}")
894
+ return None
895
+
896
+ # Connect the events
897
+ submit_btn.click(
898
+ fn=submit_question,
899
+ inputs=[question_input, chatbot_interface, file_upload],
900
+ outputs=[question_input, chatbot_interface, file_upload],
901
+ show_progress=True
902
+ )
903
+
904
+ question_input.submit(
905
+ fn=submit_question,
906
+ inputs=[question_input, chatbot_interface, file_upload],
907
+ outputs=[question_input, chatbot_interface, file_upload],
908
+ show_progress=True
909
+ )
910
+
911
+ clear_btn.click(
912
+ fn=clear_conversation,
913
+ outputs=[chatbot_interface],
914
+ show_progress=False
915
+ )
916
+
917
+ clear_files_btn.click(
918
+ fn=clear_files,
919
+ outputs=[file_upload],
920
+ show_progress=False
921
+ )
922
+
923
+ export_btn.click(
924
+ fn=export_conversation,
925
+ inputs=[chatbot_interface],
926
+ outputs=[download_file],
927
+ show_progress=True
928
+ )
929
+
930
+ return demo
931
+
932
+ if __name__ == "__main__":
933
+ print("\n" + "-"*50)
934
+ print("πŸš€ Starting GAIA Agent Q&A Chatbot...")
935
+ print("-"*50 + "\n")
936
+
937
+ # Create and launch the interface
938
+ demo = create_qna_interface()
939
+ demo.launch(
940
+ debug=True,
941
+ share=False,
942
+ server_name="0.0.0.0",
943
+ server_port=7860,
944
+ show_error=True
945
+ )
code_interpreter.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import sys
4
+ import uuid
5
+ import base64
6
+ import traceback
7
+ import contextlib
8
+ import tempfile
9
+ import subprocess
10
+ import sqlite3
11
+ from typing import Dict, List, Any, Optional, Union
12
+ import numpy as np
13
+ import pandas as pd
14
+ import matplotlib.pyplot as plt
15
+ from PIL import Image
16
+
17
+ class CodeInterpreter:
18
+ def __init__(self, allowed_modules=None, max_execution_time=30, working_directory=None):
19
+ """Initialize the code interpreter with safety measures."""
20
+ self.allowed_modules = allowed_modules or [
21
+ "numpy", "pandas", "matplotlib", "scipy", "sklearn",
22
+ "math", "random", "statistics", "datetime", "collections",
23
+ "itertools", "functools", "operator", "re", "json",
24
+ "sympy", "networkx", "nltk", "PIL", "pytesseract",
25
+ "cmath", "uuid", "tempfile", "requests", "urllib"
26
+ ]
27
+ self.max_execution_time = max_execution_time
28
+ self.working_directory = working_directory or os.path.join(os.getcwd())
29
+ if not os.path.exists(self.working_directory):
30
+ os.makedirs(self.working_directory)
31
+
32
+ self.globals = {
33
+ "__builtins__": __builtins__,
34
+ "np": np,
35
+ "pd": pd,
36
+ "plt": plt,
37
+ "Image": Image,
38
+ }
39
+ self.temp_sqlite_db = os.path.join(tempfile.gettempdir(), "code_exec.db")
40
+
41
+ def execute_code(self, code: str, language: str = "python") -> Dict[str, Any]:
42
+ """Execute the provided code in the selected programming language."""
43
+ language = language.lower()
44
+ execution_id = str(uuid.uuid4())
45
+
46
+ result = {
47
+ "execution_id": execution_id,
48
+ "status": "error",
49
+ "stdout": "",
50
+ "stderr": "",
51
+ "result": None,
52
+ "plots": [],
53
+ "dataframes": []
54
+ }
55
+
56
+ try:
57
+ if language == "python":
58
+ return self._execute_python(code, execution_id)
59
+ elif language == "bash":
60
+ return self._execute_bash(code, execution_id)
61
+ elif language == "sql":
62
+ return self._execute_sql(code, execution_id)
63
+ elif language == "c":
64
+ return self._execute_c(code, execution_id)
65
+ elif language == "java":
66
+ return self._execute_java(code, execution_id)
67
+ else:
68
+ result["stderr"] = f"Unsupported language: {language}"
69
+ except Exception as e:
70
+ result["stderr"] = str(e)
71
+
72
+ return result
73
+
74
+ def _execute_python(self, code: str, execution_id: str) -> dict:
75
+ output_buffer = io.StringIO()
76
+ error_buffer = io.StringIO()
77
+ result = {
78
+ "execution_id": execution_id,
79
+ "status": "error",
80
+ "stdout": "",
81
+ "stderr": "",
82
+ "result": None,
83
+ "plots": [],
84
+ "dataframes": []
85
+ }
86
+
87
+ try:
88
+ exec_dir = os.path.join(self.working_directory, execution_id)
89
+ os.makedirs(exec_dir, exist_ok=True)
90
+ plt.switch_backend('Agg')
91
+
92
+ with contextlib.redirect_stdout(output_buffer), contextlib.redirect_stderr(error_buffer):
93
+ exec_result = exec(code, self.globals)
94
+
95
+ if plt.get_fignums():
96
+ for i, fig_num in enumerate(plt.get_fignums()):
97
+ fig = plt.figure(fig_num)
98
+ img_path = os.path.join(exec_dir, f"plot_{i}.png")
99
+ fig.savefig(img_path)
100
+ with open(img_path, "rb") as img_file:
101
+ img_data = base64.b64encode(img_file.read()).decode('utf-8')
102
+ result["plots"].append({
103
+ "figure_number": fig_num,
104
+ "data": img_data
105
+ })
106
+
107
+ for var_name, var_value in self.globals.items():
108
+ if isinstance(var_value, pd.DataFrame) and len(var_value) > 0:
109
+ result["dataframes"].append({
110
+ "name": var_name,
111
+ "head": var_value.head().to_dict(),
112
+ "shape": var_value.shape,
113
+ "dtypes": str(var_value.dtypes)
114
+ })
115
+
116
+ result["status"] = "success"
117
+ result["stdout"] = output_buffer.getvalue()
118
+ result["result"] = exec_result
119
+
120
+ except Exception as e:
121
+ result["status"] = "error"
122
+ result["stderr"] = f"{error_buffer.getvalue()}\n{traceback.format_exc()}"
123
+
124
+ return result
125
+
126
+ def _execute_bash(self, code: str, execution_id: str) -> dict:
127
+ try:
128
+ completed = subprocess.run(
129
+ code, shell=True, capture_output=True, text=True, timeout=self.max_execution_time
130
+ )
131
+ return {
132
+ "execution_id": execution_id,
133
+ "status": "success" if completed.returncode == 0 else "error",
134
+ "stdout": completed.stdout,
135
+ "stderr": completed.stderr,
136
+ "result": None,
137
+ "plots": [],
138
+ "dataframes": []
139
+ }
140
+ except subprocess.TimeoutExpired:
141
+ return {
142
+ "execution_id": execution_id,
143
+ "status": "error",
144
+ "stdout": "",
145
+ "stderr": "Execution timed out.",
146
+ "result": None,
147
+ "plots": [],
148
+ "dataframes": []
149
+ }
150
+
151
+ def _execute_sql(self, code: str, execution_id: str) -> dict:
152
+ result = {
153
+ "execution_id": execution_id,
154
+ "status": "error",
155
+ "stdout": "",
156
+ "stderr": "",
157
+ "result": None,
158
+ "plots": [],
159
+ "dataframes": []
160
+ }
161
+ try:
162
+ conn = sqlite3.connect(self.temp_sqlite_db)
163
+ cur = conn.cursor()
164
+ cur.execute(code)
165
+ if code.strip().lower().startswith("select"):
166
+ columns = [description[0] for description in cur.description]
167
+ rows = cur.fetchall()
168
+ df = pd.DataFrame(rows, columns=columns)
169
+ result["dataframes"].append({
170
+ "name": "query_result",
171
+ "head": df.head().to_dict(),
172
+ "shape": df.shape,
173
+ "dtypes": str(df.dtypes)
174
+ })
175
+ else:
176
+ conn.commit()
177
+
178
+ result["status"] = "success"
179
+ result["stdout"] = "Query executed successfully."
180
+
181
+ except Exception as e:
182
+ result["stderr"] = str(e)
183
+ finally:
184
+ conn.close()
185
+
186
+ return result
187
+
188
+ def _execute_c(self, code: str, execution_id: str) -> dict:
189
+ temp_dir = tempfile.mkdtemp()
190
+ source_path = os.path.join(temp_dir, "program.c")
191
+ binary_path = os.path.join(temp_dir, "program")
192
+
193
+ try:
194
+ with open(source_path, "w") as f:
195
+ f.write(code)
196
+
197
+ compile_proc = subprocess.run(
198
+ ["gcc", source_path, "-o", binary_path],
199
+ capture_output=True, text=True, timeout=self.max_execution_time
200
+ )
201
+ if compile_proc.returncode != 0:
202
+ return {
203
+ "execution_id": execution_id,
204
+ "status": "error",
205
+ "stdout": compile_proc.stdout,
206
+ "stderr": compile_proc.stderr,
207
+ "result": None,
208
+ "plots": [],
209
+ "dataframes": []
210
+ }
211
+
212
+ run_proc = subprocess.run(
213
+ [binary_path],
214
+ capture_output=True, text=True, timeout=self.max_execution_time
215
+ )
216
+ return {
217
+ "execution_id": execution_id,
218
+ "status": "success" if run_proc.returncode == 0 else "error",
219
+ "stdout": run_proc.stdout,
220
+ "stderr": run_proc.stderr,
221
+ "result": None,
222
+ "plots": [],
223
+ "dataframes": []
224
+ }
225
+ except Exception as e:
226
+ return {
227
+ "execution_id": execution_id,
228
+ "status": "error",
229
+ "stdout": "",
230
+ "stderr": str(e),
231
+ "result": None,
232
+ "plots": [],
233
+ "dataframes": []
234
+ }
235
+
236
+ def _execute_java(self, code: str, execution_id: str) -> dict:
237
+ temp_dir = tempfile.mkdtemp()
238
+ source_path = os.path.join(temp_dir, "Main.java")
239
+
240
+ try:
241
+ with open(source_path, "w") as f:
242
+ f.write(code)
243
+
244
+ compile_proc = subprocess.run(
245
+ ["javac", source_path],
246
+ capture_output=True, text=True, timeout=self.max_execution_time
247
+ )
248
+ if compile_proc.returncode != 0:
249
+ return {
250
+ "execution_id": execution_id,
251
+ "status": "error",
252
+ "stdout": compile_proc.stdout,
253
+ "stderr": compile_proc.stderr,
254
+ "result": None,
255
+ "plots": [],
256
+ "dataframes": []
257
+ }
258
+
259
+ run_proc = subprocess.run(
260
+ ["java", "-cp", temp_dir, "Main"],
261
+ capture_output=True, text=True, timeout=self.max_execution_time
262
+ )
263
+ return {
264
+ "execution_id": execution_id,
265
+ "status": "success" if run_proc.returncode == 0 else "error",
266
+ "stdout": run_proc.stdout,
267
+ "stderr": run_proc.stderr,
268
+ "result": None,
269
+ "plots": [],
270
+ "dataframes": []
271
+ }
272
+ except Exception as e:
273
+ return {
274
+ "execution_id": execution_id,
275
+ "status": "error",
276
+ "stdout": "",
277
+ "stderr": str(e),
278
+ "result": None,
279
+ "plots": [],
280
+ "dataframes": []
281
+ }
evaluation_app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Basic Agent Evaluation Runner"""
2
+ import os
3
+ import inspect
4
+ import gradio as gr
5
+ import requests
6
+ import pandas as pd
7
+ import time
8
+ from langchain_core.messages import HumanMessage
9
+ from agent import build_graph
10
+
11
+
12
+
13
+ # (Keep Constants as is)
14
+ # --- Constants ---
15
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
16
+
17
+ # --- Basic Agent Definition ---
18
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
19
+
20
+
21
+ class BasicAgent:
22
+ """A langgraph agent."""
23
+ def __init__(self):
24
+ print("BasicAgent initialized.")
25
+ self.graph = build_graph()
26
+
27
+ def __call__(self, question: str) -> str:
28
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
29
+ # Wrap the question in a HumanMessage from langchain_core
30
+ messages = [HumanMessage(content=question)]
31
+ messages = self.graph.invoke({"messages": messages})
32
+ answer = messages['messages'][-1].content
33
+ return answer[14:]
34
+
35
+
36
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
37
+ """
38
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
39
+ and displays the results.
40
+ """
41
+ # --- Determine HF Space Runtime URL and Repo URL ---
42
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
43
+
44
+ if profile:
45
+ username= f"{profile.username}"
46
+ print(f"User logged in: {username}")
47
+ else:
48
+ print("User not logged in.")
49
+ return "Please Login to Hugging Face with the button.", None
50
+
51
+ api_url = DEFAULT_API_URL
52
+ questions_url = f"{api_url}/questions"
53
+ submit_url = f"{api_url}/submit"
54
+
55
+ # 1. Instantiate Agent ( modify this part to create your agent)
56
+ try:
57
+ agent = BasicAgent()
58
+ except Exception as e:
59
+ print(f"Error instantiating agent: {e}")
60
+ return f"Error initializing agent: {e}", None
61
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
62
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
63
+ print(agent_code)
64
+
65
+ # 2. Fetch Questions
66
+ print(f"Fetching questions from: {questions_url}")
67
+ try:
68
+ response = requests.get(questions_url, timeout=15)
69
+ response.raise_for_status()
70
+ questions_data = response.json()
71
+ if not questions_data:
72
+ print("Fetched questions list is empty.")
73
+ return "Fetched questions list is empty or invalid format.", None
74
+ print(f"Fetched {len(questions_data)} questions.")
75
+ except requests.exceptions.RequestException as e:
76
+ print(f"Error fetching questions: {e}")
77
+ return f"Error fetching questions: {e}", None
78
+ except requests.exceptions.JSONDecodeError as e:
79
+ print(f"Error decoding JSON response from questions endpoint: {e}")
80
+ print(f"Response text: {response.text[:500]}")
81
+ return f"Error decoding server response for questions: {e}", None
82
+ except Exception as e:
83
+ print(f"An unexpected error occurred fetching questions: {e}")
84
+ return f"An unexpected error occurred fetching questions: {e}", None
85
+
86
+ # 3. Run your Agent
87
+ results_log = []
88
+ answers_payload = []
89
+ print(f"Running agent on {len(questions_data)} questions...")
90
+ for item in questions_data:
91
+ task_id = item.get("task_id")
92
+ question_text = item.get("question")
93
+ if not task_id or question_text is None:
94
+ print(f"Skipping item with missing task_id or question: {item}")
95
+ continue
96
+
97
+ time.sleep(30)
98
+
99
+ try:
100
+ submitted_answer = agent(question_text)
101
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
102
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
103
+ except Exception as e:
104
+ print(f"Error running agent on task {task_id}: {e}")
105
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
106
+
107
+ if not answers_payload:
108
+ print("Agent did not produce any answers to submit.")
109
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
110
+
111
+ # 4. Prepare Submission
112
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
113
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
114
+ print(status_update)
115
+
116
+ # 5. Submit
117
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
118
+ try:
119
+ response = requests.post(submit_url, json=submission_data, timeout=60)
120
+ response.raise_for_status()
121
+ result_data = response.json()
122
+ final_status = (
123
+ f"Submission Successful!\n"
124
+ f"User: {result_data.get('username')}\n"
125
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
126
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
127
+ f"Message: {result_data.get('message', 'No message received.')}"
128
+ )
129
+ print("Submission successful.")
130
+ results_df = pd.DataFrame(results_log)
131
+ return final_status, results_df
132
+ except requests.exceptions.HTTPError as e:
133
+ error_detail = f"Server responded with status {e.response.status_code}."
134
+ try:
135
+ error_json = e.response.json()
136
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
137
+ except requests.exceptions.JSONDecodeError:
138
+ error_detail += f" Response: {e.response.text[:500]}"
139
+ status_message = f"Submission Failed: {error_detail}"
140
+ print(status_message)
141
+ results_df = pd.DataFrame(results_log)
142
+ return status_message, results_df
143
+ except requests.exceptions.Timeout:
144
+ status_message = "Submission Failed: The request timed out."
145
+ print(status_message)
146
+ results_df = pd.DataFrame(results_log)
147
+ return status_message, results_df
148
+ except requests.exceptions.RequestException as e:
149
+ status_message = f"Submission Failed: Network error - {e}"
150
+ print(status_message)
151
+ results_df = pd.DataFrame(results_log)
152
+ return status_message, results_df
153
+ except Exception as e:
154
+ status_message = f"An unexpected error occurred during submission: {e}"
155
+ print(status_message)
156
+ results_df = pd.DataFrame(results_log)
157
+ return status_message, results_df
158
+
159
+
160
+ # --- Build Gradio Interface using Blocks ---
161
+ with gr.Blocks() as demo:
162
+ gr.Markdown("# Basic Agent Evaluation Runner")
163
+ gr.Markdown(
164
+ """
165
+ **Instructions:**
166
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
167
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
168
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
169
+ ---
170
+ **Disclaimers:**
171
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
172
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
173
+ """
174
+ )
175
+
176
+ gr.LoginButton()
177
+
178
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
179
+
180
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
181
+ # Removed max_rows=10 from DataFrame constructor
182
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
183
+
184
+ run_button.click(
185
+ fn=run_and_submit_all,
186
+ outputs=[status_output, results_table]
187
+ )
188
+
189
+ if __name__ == "__main__":
190
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
191
+ # Check for SPACE_HOST and SPACE_ID at startup for information
192
+ space_host_startup = os.getenv("SPACE_HOST")
193
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
194
+
195
+ if space_host_startup:
196
+ print(f"βœ… SPACE_HOST found: {space_host_startup}")
197
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
198
+ else:
199
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
200
+
201
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
202
+ print(f"βœ… SPACE_ID found: {space_id_startup}")
203
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
204
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
205
+ else:
206
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
207
+
208
+ print("-"*(60 + len(" App Starting ")) + "\n")
209
+
210
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
211
+ demo.launch(debug=True, share=False)
explore_metadata.ipynb ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 9,
6
+ "id": "a600d7fc",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import json \n",
11
+ "with open('metadata.jsonl', 'r') as f: \n",
12
+ " json_list = list(f)\n",
13
+ "\n",
14
+ "json_QA = []\n",
15
+ "for json_str in json_list: \n",
16
+ " json_data = json.loads(json_str)\n",
17
+ " json_QA.append(json_data)"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": 10,
23
+ "id": "fa5d8eb8",
24
+ "metadata": {},
25
+ "outputs": [
26
+ {
27
+ "name": "stdout",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "==================================================\n",
31
+ "Task ID: d1af70ea-a9a4-421a-b9cc-94b5e02f1788\n",
32
+ "Question: As of the 2020 census, what was the population difference between the largest county seat and smallest county seat, by land area of the county seat, in Washington state? For population figures, please use the official data from data.census.gov. Please report the integer difference.\n",
33
+ "Level: 2\n",
34
+ "Final Answer: 736455\n",
35
+ "Annotator Metadata: \n",
36
+ " β”œβ”€β”€ Steps: \n",
37
+ " β”‚ β”œβ”€β”€ Step 1: Using a web browser, access a search engine and conduct a search, \"Washington cities by area\"\n",
38
+ " β”‚ β”œβ”€β”€ Step 2: Navigate to the second search result, https://en.wikipedia.org/wiki/List_of_municipalities_in_Washington\n",
39
+ " β”‚ β”œβ”€β”€ Step 3: Evaluate the page contents, finding the largest and smallest county seats by land area, Seattle and Cathlamet\n",
40
+ " β”‚ β”œβ”€β”€ Step 4: Using a web browser, navigate to https://data.census.gov/\n",
41
+ " β”‚ β”œβ”€β”€ Step 5: Using the website's search area, conduct a search, Seattle, Washington\n",
42
+ " β”‚ β”œβ”€β”€ Step 6: Record the reported 2020 Decennial Census population of Seattle, Washington, 737,015\n",
43
+ " β”‚ β”œβ”€β”€ Step 7: Using the website's search area, conduct a search, Cathlamet, Washington\n",
44
+ " β”‚ β”œβ”€β”€ Step 8: Record the reported 2020 Decennial Census population of Cathlamet, Washington, 560\n",
45
+ " β”‚ β”œβ”€β”€ Step 9: Using a calculator, find the difference in populations,\n",
46
+ " β”‚ β”œβ”€β”€ \n",
47
+ " β”‚ β”œβ”€β”€ 737,015 - 560\n",
48
+ " β”‚ β”œβ”€β”€ 736,455\n",
49
+ " β”‚ β”œβ”€β”€ Step 10: Report the correct answer to my user in the requested format, \"736,455\"\n",
50
+ " β”œβ”€β”€ Number of steps: 10\n",
51
+ " β”œβ”€β”€ How long did this take?: 5 minutes\n",
52
+ " β”œβ”€β”€ Tools:\n",
53
+ " β”‚ β”œβ”€β”€ 1. A web browser\n",
54
+ " β”‚ β”œβ”€β”€ 2. A search engine\n",
55
+ " β”‚ β”œβ”€β”€ 3. A calculator\n",
56
+ " └── Number of tools: 3\n",
57
+ "==================================================\n"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "import random\n",
63
+ "random_samples = random.sample(json_QA, 1)\n",
64
+ "for sample in random_samples:\n",
65
+ " print(\"=\" * 50)\n",
66
+ " print(f\"Task ID: {sample['task_id']}\")\n",
67
+ " print(f\"Question: {sample['Question']}\")\n",
68
+ " print(f\"Level: {sample['Level']}\")\n",
69
+ " print(f\"Final Answer: {sample['Final answer']}\")\n",
70
+ " print(f\"Annotator Metadata: \")\n",
71
+ " print(f\" β”œβ”€β”€ Steps: \")\n",
72
+ " for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
73
+ " print(f\" β”‚ β”œβ”€β”€ {step}\")\n",
74
+ " print(f\" β”œβ”€β”€ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
75
+ " print(f\" β”œβ”€β”€ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
76
+ " print(f\" β”œβ”€β”€ Tools:\")\n",
77
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
78
+ " print(f\" β”‚ β”œβ”€β”€ {tool}\")\n",
79
+ " print(f\" └── Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
80
+ "print(\"=\" * 50)"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": 11,
86
+ "id": "05076516",
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "import os\n",
91
+ "from dotenv import load_dotenv\n",
92
+ "from langchain_huggingface import HuggingFaceEmbeddings\n",
93
+ "from langchain_community.vectorstores import SupabaseVectorStore\n",
94
+ "from supabase.client import Client, create_client\n",
95
+ "\n",
96
+ "\n",
97
+ "load_dotenv()\n",
98
+ "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
99
+ "\n",
100
+ "supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
101
+ "supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
102
+ "supabase: Client = create_client(supabase_url, supabase_key)"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": 20,
108
+ "id": "aa1402e3",
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "from langchain.schema import Document\n",
113
+ "docs = []\n",
114
+ "cnt = 0 \n",
115
+ "for sample in json_QA:\n",
116
+ " content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
117
+ " doc = {\n",
118
+ " \"id\" : cnt,\n",
119
+ " \"content\" : content,\n",
120
+ " \"metadata\" : {\n",
121
+ " \"source\" : sample['task_id']\n",
122
+ " },\n",
123
+ " \"embedding\" : embeddings.embed_query(content),\n",
124
+ " }\n",
125
+ " docs.append(doc)\n",
126
+ " cnt += 1\n",
127
+ "\n",
128
+ "# upload the documents to the vector database\n",
129
+ "try:\n",
130
+ " response = (\n",
131
+ " supabase.table(\"documents2\")\n",
132
+ " .insert(docs)\n",
133
+ " .execute()\n",
134
+ " )\n",
135
+ "except Exception as exception:\n",
136
+ " print(\"Error inserting data into Supabase:\", exception)\n",
137
+ "\n",
138
+ "# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
139
+ "# import pandas as pd\n",
140
+ "# df = pd.DataFrame(docs)\n",
141
+ "# df.to_csv('supabase_docs.csv',index=False)"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 41,
147
+ "id": "9aa7eb5e",
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "# add items to vector database\n",
152
+ "vector_store = SupabaseVectorStore(\n",
153
+ " client=supabase,\n",
154
+ " embedding= embeddings,\n",
155
+ " table_name=\"documents2\",\n",
156
+ " query_name=\"match_documents_2\",\n",
157
+ ")\n",
158
+ "retriever = vector_store.as_retriever()"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 42,
164
+ "id": "9eecafd1",
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
169
+ "# matched_docs = vector_store.similarity_search(query, k=2)\n",
170
+ "docs = retriever.invoke(query)"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": 43,
176
+ "id": "ff917840",
177
+ "metadata": {},
178
+ "outputs": [
179
+ {
180
+ "data": {
181
+ "text/plain": [
182
+ "Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
183
+ ]
184
+ },
185
+ "execution_count": 43,
186
+ "metadata": {},
187
+ "output_type": "execute_result"
188
+ }
189
+ ],
190
+ "source": [
191
+ "docs[0]"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": 44,
197
+ "id": "01c8f337",
198
+ "metadata": {},
199
+ "outputs": [
200
+ {
201
+ "name": "stdout",
202
+ "output_type": "stream",
203
+ "text": [
204
+ "List of tools used in all samples:\n",
205
+ "Total number of tools used: 83\n",
206
+ " β”œβ”€β”€ web browser: 107\n",
207
+ " β”œβ”€β”€ image recognition tools (to identify and parse a figure with three axes): 1\n",
208
+ " β”œβ”€β”€ search engine: 101\n",
209
+ " β”œβ”€β”€ calculator: 34\n",
210
+ " β”œβ”€β”€ unlambda compiler (optional): 1\n",
211
+ " β”œβ”€β”€ a web browser.: 2\n",
212
+ " β”œβ”€β”€ a search engine.: 2\n",
213
+ " β”œβ”€β”€ a calculator.: 1\n",
214
+ " β”œβ”€β”€ microsoft excel: 5\n",
215
+ " β”œβ”€β”€ google search: 1\n",
216
+ " β”œβ”€β”€ ne: 9\n",
217
+ " β”œβ”€β”€ pdf access: 7\n",
218
+ " β”œβ”€β”€ file handling: 2\n",
219
+ " β”œβ”€β”€ python: 3\n",
220
+ " β”œβ”€β”€ image recognition tools: 12\n",
221
+ " β”œβ”€β”€ jsonld file access: 1\n",
222
+ " β”œβ”€β”€ video parsing: 1\n",
223
+ " β”œβ”€β”€ python compiler: 1\n",
224
+ " β”œβ”€β”€ video recognition tools: 3\n",
225
+ " β”œβ”€β”€ pdf viewer: 7\n",
226
+ " β”œβ”€β”€ microsoft excel / google sheets: 3\n",
227
+ " β”œβ”€β”€ word document access: 1\n",
228
+ " β”œβ”€β”€ tool to extract text from images: 1\n",
229
+ " β”œβ”€β”€ a word reversal tool / script: 1\n",
230
+ " β”œβ”€β”€ counter: 1\n",
231
+ " β”œβ”€β”€ excel: 3\n",
232
+ " β”œβ”€β”€ image recognition: 5\n",
233
+ " β”œβ”€β”€ color recognition: 3\n",
234
+ " β”œβ”€β”€ excel file access: 3\n",
235
+ " β”œβ”€β”€ xml file access: 1\n",
236
+ " β”œβ”€β”€ access to the internet archive, web.archive.org: 1\n",
237
+ " β”œβ”€β”€ text processing/diff tool: 1\n",
238
+ " β”œβ”€β”€ gif parsing tools: 1\n",
239
+ " β”œβ”€β”€ a web browser: 7\n",
240
+ " β”œβ”€β”€ a search engine: 7\n",
241
+ " β”œβ”€β”€ a speech-to-text tool: 2\n",
242
+ " β”œβ”€β”€ code/data analysis tools: 1\n",
243
+ " β”œβ”€β”€ audio capability: 2\n",
244
+ " β”œβ”€β”€ pdf reader: 1\n",
245
+ " β”œβ”€β”€ markdown: 1\n",
246
+ " β”œβ”€β”€ a calculator: 5\n",
247
+ " β”œβ”€β”€ access to wikipedia: 3\n",
248
+ " β”œβ”€β”€ image recognition/ocr: 3\n",
249
+ " β”œβ”€β”€ google translate access: 1\n",
250
+ " β”œβ”€β”€ ocr: 4\n",
251
+ " β”œβ”€β”€ bass note data: 1\n",
252
+ " β”œβ”€β”€ text editor: 1\n",
253
+ " β”œβ”€β”€ xlsx file access: 1\n",
254
+ " β”œβ”€β”€ powerpoint viewer: 1\n",
255
+ " β”œβ”€β”€ csv file access: 1\n",
256
+ " β”œβ”€β”€ calculator (or use excel): 1\n",
257
+ " β”œβ”€β”€ computer algebra system: 1\n",
258
+ " β”œβ”€β”€ video processing software: 1\n",
259
+ " β”œβ”€β”€ audio processing software: 1\n",
260
+ " β”œβ”€β”€ computer vision: 1\n",
261
+ " β”œβ”€β”€ google maps: 1\n",
262
+ " β”œβ”€β”€ access to excel files: 1\n",
263
+ " β”œβ”€β”€ calculator (or ability to count): 1\n",
264
+ " β”œβ”€β”€ a file interface: 3\n",
265
+ " β”œβ”€β”€ a python ide: 1\n",
266
+ " β”œβ”€β”€ spreadsheet editor: 1\n",
267
+ " β”œβ”€β”€ tools required: 1\n",
268
+ " β”œβ”€β”€ b browser: 1\n",
269
+ " β”œβ”€β”€ image recognition and processing tools: 1\n",
270
+ " β”œβ”€β”€ computer vision or ocr: 1\n",
271
+ " β”œβ”€β”€ c++ compiler: 1\n",
272
+ " β”œβ”€β”€ access to google maps: 1\n",
273
+ " β”œβ”€β”€ youtube player: 1\n",
274
+ " β”œβ”€β”€ natural language processor: 1\n",
275
+ " β”œβ”€β”€ graph interaction tools: 1\n",
276
+ " β”œβ”€β”€ bablyonian cuniform -> arabic legend: 1\n",
277
+ " β”œβ”€β”€ access to youtube: 1\n",
278
+ " β”œβ”€β”€ image search tools: 1\n",
279
+ " β”œβ”€β”€ calculator or counting function: 1\n",
280
+ " β”œβ”€β”€ a speech-to-text audio processing tool: 1\n",
281
+ " β”œβ”€β”€ access to academic journal websites: 1\n",
282
+ " β”œβ”€β”€ pdf reader/extracter: 1\n",
283
+ " β”œβ”€β”€ rubik's cube model: 1\n",
284
+ " β”œβ”€β”€ wikipedia: 1\n",
285
+ " β”œβ”€β”€ video capability: 1\n",
286
+ " β”œβ”€β”€ image processing tools: 1\n",
287
+ " β”œβ”€β”€ age recognition software: 1\n",
288
+ " β”œβ”€β”€ youtube: 1\n"
289
+ ]
290
+ }
291
+ ],
292
+ "source": [
293
+ "# list of the tools used in all the samples\n",
294
+ "from collections import Counter, OrderedDict\n",
295
+ "\n",
296
+ "tools = []\n",
297
+ "for sample in json_QA:\n",
298
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
299
+ " tool = tool[2:].strip().lower()\n",
300
+ " if tool.startswith(\"(\"):\n",
301
+ " tool = tool[11:].strip()\n",
302
+ " tools.append(tool)\n",
303
+ "tools_counter = OrderedDict(Counter(tools))\n",
304
+ "print(\"List of tools used in all samples:\")\n",
305
+ "print(\"Total number of tools used:\", len(tools_counter))\n",
306
+ "for tool, count in tools_counter.items():\n",
307
+ " print(f\" β”œβ”€β”€ {tool}: {count}\")"
308
+ ]
309
+ }
310
+ ],
311
+ "metadata": {
312
+ "kernelspec": {
313
+ "display_name": "env",
314
+ "language": "python",
315
+ "name": "python3"
316
+ },
317
+ "language_info": {
318
+ "codemirror_mode": {
319
+ "name": "ipython",
320
+ "version": 3
321
+ },
322
+ "file_extension": ".py",
323
+ "mimetype": "text/x-python",
324
+ "name": "python",
325
+ "nbconvert_exporter": "python",
326
+ "pygments_lexer": "ipython3",
327
+ "version": "3.11.9"
328
+ }
329
+ },
330
+ "nbformat": 4,
331
+ "nbformat_minor": 5
332
+ }
image_processing.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import base64
4
+ import uuid
5
+ from PIL import Image
6
+
7
+ # Helper functions for image processing
8
+ def encode_image(image_path: str) -> str:
9
+ """Convert an image file to base64 string."""
10
+ with open(image_path, "rb") as image_file:
11
+ return base64.b64encode(image_file.read()).decode("utf-8")
12
+
13
+
14
+ def decode_image(base64_string: str) -> Image.Image:
15
+ """Convert a base64 string to a PIL Image."""
16
+ image_data = base64.b64decode(base64_string)
17
+ return Image.open(io.BytesIO(image_data))
18
+
19
+
20
+ def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
21
+ """Save a PIL Image to disk and return the path."""
22
+ os.makedirs(directory, exist_ok=True)
23
+ image_id = str(uuid.uuid4())
24
+ image_path = os.path.join(directory, f"{image_id}.png")
25
+ image.save(image_path)
26
+ return image_path
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
19
+ pytesseract
20
+ matplotlib
21
+ sentence_transformers
supabase_docs.csv ADDED
The diff for this file is too large to render. See raw diff
 
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.