Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
import faiss
|
| 7 |
from langchain.prompts import PromptTemplate
|
|
|
|
| 8 |
|
| 9 |
import time
|
| 10 |
import torch
|
|
@@ -24,6 +25,15 @@ dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
|
| 24 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
| 25 |
print(dataset[1])
|
| 26 |
length = len(dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
#Itemdetails = dataset.items()
|
| 29 |
#print(Itemdetails)
|
|
@@ -35,12 +45,12 @@ embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
| 35 |
#doc_func = lambda x: x.text
|
| 36 |
#dataset = list(map(doc_func, dataset))
|
| 37 |
|
| 38 |
-
def embedder(dataset):
|
| 39 |
-
embeddings = embedding_model.encode(dataset["text"])
|
| 40 |
-
dataset = dataset.add_column('embeddings', embeddings)
|
| 41 |
-
return dataset
|
| 42 |
-
updated_dataset = dataset.map(embedder)
|
| 43 |
-
dataset['text'][:length]
|
| 44 |
|
| 45 |
#print(embeddings)
|
| 46 |
|
|
|
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
import faiss
|
| 7 |
from langchain.prompts import PromptTemplate
|
| 8 |
+
import pandas as pd
|
| 9 |
|
| 10 |
import time
|
| 11 |
import torch
|
|
|
|
| 25 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
| 26 |
print(dataset[1])
|
| 27 |
length = len(dataset)
|
| 28 |
+
df = pd.DataFrame(dataset)
|
| 29 |
+
|
| 30 |
+
embeddings = embedding_model.encode(dataset["text"])
|
| 31 |
+
print(embeddings)
|
| 32 |
+
|
| 33 |
+
df['embeddings'] = embeddings
|
| 34 |
+
dataset = Dataset.from_pandas(df)
|
| 35 |
+
print(dataset[1])
|
| 36 |
+
|
| 37 |
|
| 38 |
#Itemdetails = dataset.items()
|
| 39 |
#print(Itemdetails)
|
|
|
|
| 45 |
#doc_func = lambda x: x.text
|
| 46 |
#dataset = list(map(doc_func, dataset))
|
| 47 |
|
| 48 |
+
#def embedder(dataset):
|
| 49 |
+
# embeddings = embedding_model.encode(dataset["text"])
|
| 50 |
+
# dataset = dataset.add_column('embeddings', embeddings)
|
| 51 |
+
# return dataset
|
| 52 |
+
#updated_dataset = dataset.map(embedder)
|
| 53 |
+
#dataset['text'][:length]
|
| 54 |
|
| 55 |
#print(embeddings)
|
| 56 |
|