Update app.py
Browse files
app.py
CHANGED
|
@@ -19,15 +19,46 @@ tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
|
| 19 |
|
| 20 |
#import numpy as np
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
| 27 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
| 28 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
| 29 |
-
print(
|
| 30 |
-
length = len(
|
| 31 |
|
| 32 |
#Itemdetails = dataset.items()
|
| 33 |
#print(Itemdetails)
|
|
@@ -39,18 +70,18 @@ embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
| 39 |
#doc_func = lambda x: x.text
|
| 40 |
#dataset = list(map(doc_func, dataset))
|
| 41 |
|
| 42 |
-
def embedder(
|
| 43 |
-
embeddings = embedding_model.encode(
|
| 44 |
-
|
| 45 |
-
return
|
| 46 |
-
updated_dataset =
|
| 47 |
dataset['text'][:length]
|
| 48 |
|
| 49 |
#print(embeddings)
|
| 50 |
|
| 51 |
print(updated_dataset[1])
|
| 52 |
print(updated_dataset[2])
|
| 53 |
-
print(
|
| 54 |
|
| 55 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
| 56 |
#data = FAISS.from_embeddings(embed, embedding_model)
|
|
|
|
| 19 |
|
| 20 |
#import numpy as np
|
| 21 |
|
| 22 |
+
from torch.utils.data import Dataset, IterableDataset
|
| 23 |
+
|
| 24 |
+
class MyIterableDataset(IterableDataset):
|
| 25 |
+
def __init__(self, iterable):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.iterable = iterable
|
| 28 |
+
|
| 29 |
+
def __iter__(self):
|
| 30 |
+
return iter(self.iterable)
|
| 31 |
+
|
| 32 |
+
class MapStyleDataset(Dataset):
|
| 33 |
+
def __init__(self, iterable):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.data = list(iterable)
|
| 36 |
+
|
| 37 |
+
def __len__(self):
|
| 38 |
+
return len(self.data)
|
| 39 |
+
|
| 40 |
+
def __getitem__(self, idx):
|
| 41 |
+
return self.data[idx]
|
| 42 |
+
|
| 43 |
+
# Create an iterable
|
| 44 |
+
iterable = "Namitg02/Test"
|
| 45 |
+
|
| 46 |
+
# Convert the iterable to a MapStyle dataset
|
| 47 |
+
map_style_dataset = MapStyleDataset(iterable)
|
| 48 |
+
|
| 49 |
+
# Create a DataLoader for the MapStyle dataset
|
| 50 |
+
data_loader = torch.utils.data.DataLoader(map_style_dataset, batch_size=2)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#datasetiter = load_dataset("Namitg02/Test", split='train', streaming=False)
|
| 54 |
+
#dataset = to_map_style_dataset(datasetiter)
|
| 55 |
|
| 56 |
|
| 57 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
| 58 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
| 59 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
| 60 |
+
print(map_style_dataset[1])
|
| 61 |
+
length = len(map_style_dataset)
|
| 62 |
|
| 63 |
#Itemdetails = dataset.items()
|
| 64 |
#print(Itemdetails)
|
|
|
|
| 70 |
#doc_func = lambda x: x.text
|
| 71 |
#dataset = list(map(doc_func, dataset))
|
| 72 |
|
| 73 |
+
def embedder(map_style_dataset):
|
| 74 |
+
embeddings = embedding_model.encode(map_style_dataset["text"])
|
| 75 |
+
map_style_dataset = map_style_dataset.add_column('embeddings', embeddings)
|
| 76 |
+
return map_style_dataset
|
| 77 |
+
updated_dataset = map_style_dataset.map(embedder)
|
| 78 |
dataset['text'][:length]
|
| 79 |
|
| 80 |
#print(embeddings)
|
| 81 |
|
| 82 |
print(updated_dataset[1])
|
| 83 |
print(updated_dataset[2])
|
| 84 |
+
print(map_style_dataset[1])
|
| 85 |
|
| 86 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
| 87 |
#data = FAISS.from_embeddings(embed, embedding_model)
|