Update app.py
Browse files
app.py
CHANGED
|
@@ -55,8 +55,6 @@ print(dataset[2])
|
|
| 55 |
|
| 56 |
#print(embeddings)
|
| 57 |
|
| 58 |
-
print(updated_dataset[1])
|
| 59 |
-
print(updated_dataset[2])
|
| 60 |
print(dataset[1])
|
| 61 |
|
| 62 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
|
@@ -66,7 +64,7 @@ embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
|
| 66 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
| 67 |
# add_embeddings
|
| 68 |
#data = dataset["clean_text"]
|
| 69 |
-
data =
|
| 70 |
|
| 71 |
#print(data)
|
| 72 |
d = 384 # vectors dimension
|
|
|
|
| 55 |
|
| 56 |
#print(embeddings)
|
| 57 |
|
|
|
|
|
|
|
| 58 |
print(dataset[1])
|
| 59 |
|
| 60 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
|
|
|
| 64 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
| 65 |
# add_embeddings
|
| 66 |
#data = dataset["clean_text"]
|
| 67 |
+
data = dataset
|
| 68 |
|
| 69 |
#print(data)
|
| 70 |
d = 384 # vectors dimension
|