Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +28 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 2 |
+
import torch
|
| 3 |
+
import librosa
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# Cargamos el modelo de guaran铆
|
| 7 |
+
model_name = "ivangtorre/wav2vec2-xlsr-300m-guarani"
|
| 8 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 9 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
# Transcripci贸n
|
| 12 |
+
def transcribir(audio):
|
| 13 |
+
audio_data, _ = librosa.load(audio, sr=16000)
|
| 14 |
+
inputs = processor(audio_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
logits = model(**inputs).logits
|
| 17 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 18 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 19 |
+
return transcription.lower()
|
| 20 |
+
|
| 21 |
+
# Interfaz de Gradio
|
| 22 |
+
demo = gr.Interface(
|
| 23 |
+
fn=transcribir,
|
| 24 |
+
inputs=gr.Audio(type="filepath"),
|
| 25 |
+
outputs="text",
|
| 26 |
+
title="Transcriptor Guaran铆",
|
| 27 |
+
description="Sub铆 un audio en guaran铆 (.ogg, .wav) y obten茅 la transcripci贸n"
|
| 28 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
librosa
|
| 4 |
+
soundfile
|
| 5 |
+
gradio
|