File size: 10,896 Bytes
7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 7e208b2 c0bf168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import xml.etree.ElementTree as ET
import re
# Coptic alphabet helper
COPTIC_ALPHABET = {
'Ⲁ': 'Alpha', 'Ⲃ': 'Beta', 'Ⲅ': 'Gamma', 'Ⲇ': 'Delta', 'Ⲉ': 'Epsilon', 'Ⲋ': 'Zeta',
'Ⲏ': 'Eta', 'Ⲑ': 'Theta', 'Ⲓ': 'Iota', 'Ⲕ': 'Kappa', 'Ⲗ': 'Lambda', 'Ⲙ': 'Mu',
'Ⲛ': 'Nu', 'Ⲝ': 'Xi', 'Ⲟ': 'Omicron', 'Ⲡ': 'Pi', 'Ⲣ': 'Rho', 'Ⲥ': 'Sigma',
'Ⲧ': 'Tau', 'Ⲩ': 'Upsilon', 'Ⲫ': 'Phi', 'Ⲭ': 'Chi', 'Ⲯ': 'Psi', 'Ⲱ': 'Omega',
'Ϣ': 'Shai', 'Ϥ': 'Fai', 'Ϧ': 'Khei', 'Ϩ': 'Hori', 'Ϫ': 'Gangia', 'Ϭ': 'Shima', 'Ϯ': 'Ti'
}
# Coptic linguistic prompts
COPTIC_PROMPTS = {
'dialect_analysis': "Analyze the Coptic dialect of this text and identify linguistic features:",
'translation': "Translate this Coptic text to English, preserving theological and cultural context:",
'transcription': "Provide a romanized transcription of this Coptic text:",
'morphology': "Analyze the morphological structure of these Coptic words:",
'lexicon_lookup': "Look up these Coptic words in the lexicon and provide Greek etymologies:"
}
# Lexicon loader
@st.cache_data
def load_coptic_lexicon(file_path=None):
"""Load Coptic lexicon from various formats including TEI XML"""
if not file_path or not os.path.exists(file_path):
return {}
lexicon = {}
try:
# Handle XML format (TEI structure for Comprehensive Coptic Lexicon)
if file_path.endswith('.xml'):
tree = ET.parse(file_path)
root = tree.getroot()
# Handle TEI namespace
ns = {'tei': 'http://www.tei-c.org/ns/1.0'}
# Find entries in TEI format
entries = root.findall('.//tei:entry', ns)
for entry in entries[:100]: # Limit to first 100 entries for performance
coptic_word = ""
definition = ""
# Extract Coptic headword from TEI structure
form = entry.find('.//tei:form[@type="lemma"]', ns) or entry.find('.//tei:form', ns)
if form is not None:
orth = form.find('.//tei:orth', ns)
if orth is not None and orth.text:
coptic_word = orth.text.strip()
# Extract definition from sense elements
senses = entry.findall('.//tei:sense', ns)
definitions = []
for sense in senses[:2]: # Limit to first 2 senses
def_elem = sense.find('.//tei:def', ns)
if def_elem is not None and def_elem.text:
definitions.append(def_elem.text.strip())
if definitions:
definition = "; ".join(definitions)
# Clean and store
if coptic_word and definition:
# Clean Coptic word (preserve Coptic and Greek Unicode)
coptic_word = re.sub(r'[^\u2C80-\u2CFF\u03B0-\u03FF\u1F00-\u1FFF\w\s\-]', '', coptic_word).strip()
if coptic_word:
lexicon[coptic_word] = definition[:200] # Limit definition length
# Handle text formats
else:
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
# Support multiple separators
separator = None
for sep in ['\t', '|', ',', ';']:
if sep in line:
separator = sep
break
if separator:
parts = line.split(separator, 1)
if len(parts) >= 2:
coptic_word = parts[0].strip()
definition = parts[1].strip()
lexicon[coptic_word] = definition
except Exception as e:
st.error(f"Error loading lexicon: {str(e)}")
return lexicon
# Language detection and UI
LANGUAGES = {
'en': 'English', 'es': 'Español', 'fr': 'Français', 'de': 'Deutsch',
'zh': '中文', 'ja': '日本語', 'ar': 'العربية', 'hi': 'हिन्दी',
'cop': 'Coptic (ⲘⲉⲧⲢⲉⲙ̀ⲛⲭⲏⲙⲓ)', 'cop-sa': 'Sahidic Coptic', 'cop-bo': 'Bohairic Coptic'
}
st.set_page_config(page_title="Apertus Chat", layout="wide")
# Language selector
selected_lang = st.selectbox("Language / Langue / Idioma",
options=list(LANGUAGES.keys()),
format_func=lambda x: LANGUAGES[x])
# Sidebar for Coptic tools
with st.sidebar:
st.header("Coptic Tools")
# Lexicon file uploader
lexicon_file = st.file_uploader("Upload Coptic Lexicon",
type=['txt', 'tsv', 'csv', 'xml'],
help="Supports: Text (TAB/pipe separated), XML (Crum format), CSV")
# Load lexicon
if lexicon_file:
# Save uploaded file temporarily
with open("temp_lexicon.txt", "wb") as f:
f.write(lexicon_file.getbuffer())
coptic_lexicon = load_coptic_lexicon("temp_lexicon.txt")
st.success(f"Loaded {len(coptic_lexicon)} lexicon entries")
else:
# Try to load the comprehensive lexicon if available
comprehensive_lexicon_path = "Comprehensive_Coptic_Lexicon-v1.2-2020.xml"
if os.path.exists(comprehensive_lexicon_path):
coptic_lexicon = load_coptic_lexicon(comprehensive_lexicon_path)
if coptic_lexicon:
st.info(f"Loaded Comprehensive Coptic Lexicon: {len(coptic_lexicon)} entries")
else:
coptic_lexicon = {}
else:
coptic_lexicon = {}
# Coptic alphabet reference
if st.expander("Coptic Alphabet"):
for letter, name in COPTIC_ALPHABET.items():
st.text(f"{letter} - {name}")
# Lexicon search
if coptic_lexicon:
st.subheader("Lexicon Search")
# Virtual Coptic keyboard
st.write("**Virtual Keyboard:**")
coptic_letters = ['ⲁ', 'ⲃ', 'ⲅ', 'ⲇ', 'ⲉ', 'ⲍ', 'ⲏ', 'ⲑ', 'ⲓ', 'ⲕ', 'ⲗ', 'ⲙ', 'ⲛ', 'ⲝ', 'ⲟ', 'ⲡ', 'ⲣ', 'ⲥ', 'ⲧ', 'ⲩ', 'ⲫ', 'ⲭ', 'ⲯ', 'ⲱ', 'ϣ', 'ϥ', 'ϧ', 'ϩ', 'ϫ', 'ϭ', 'ϯ']
# Create keyboard layout in rows
cols1 = st.columns(8)
cols2 = st.columns(8)
cols3 = st.columns(8)
cols4 = st.columns(8)
keyboard_input = ""
for i, letter in enumerate(coptic_letters):
col_idx = i % 8
if i < 8:
if cols1[col_idx].button(letter, key=f"key_{letter}"):
keyboard_input = letter
elif i < 16:
if cols2[col_idx].button(letter, key=f"key_{letter}"):
keyboard_input = letter
elif i < 24:
if cols3[col_idx].button(letter, key=f"key_{letter}"):
keyboard_input = letter
else:
if cols4[col_idx].button(letter, key=f"key_{letter}"):
keyboard_input = letter
# Search input
search_term = st.text_input("Search Coptic word:", value=keyboard_input if keyboard_input else "")
if search_term:
if search_term in coptic_lexicon:
st.write(f"**{search_term}**")
st.write(coptic_lexicon[search_term])
else:
# Partial matches
matches = [k for k in coptic_lexicon.keys() if search_term in k]
if matches:
st.write("Partial matches:")
for match in matches[:5]: # Show first 5 matches
st.write(f"**{match}** → {coptic_lexicon[match][:100]}...")
else:
st.write("No matches found")
# Linguistic analysis options
if selected_lang in ['cop', 'cop-sa', 'cop-bo']:
st.subheader("Analysis Type")
analysis_type = st.selectbox("Choose analysis:",
options=list(COPTIC_PROMPTS.keys()),
format_func=lambda x: x.replace('_', ' ').title())
# Load model (cached)
@st.cache_resource
def load_model():
model_path = "swiss-ai/Apertus-8B-Instruct-2509"
try:
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16)
return tokenizer, model
except Exception as e:
st.error(f"Failed to load model: {str(e)}")
return None, None
tokenizer, model = load_model()
# Chat interface
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("Type your message..."):
# Add Coptic-specific prompt prefix if applicable
if selected_lang in ['cop', 'cop-sa', 'cop-bo'] and 'analysis_type' in locals():
full_prompt = f"{COPTIC_PROMPTS[analysis_type]} {prompt}"
# Add lexicon context for lexicon lookup
if analysis_type == 'lexicon_lookup' and coptic_lexicon:
words_in_prompt = prompt.split()
lexicon_matches = []
for word in words_in_prompt:
if word in coptic_lexicon:
lexicon_matches.append(f"{word} = {coptic_lexicon[word]}")
if lexicon_matches:
full_prompt += f"\n\nLexicon entries found: {'; '.join(lexicon_matches)}"
else:
full_prompt = prompt
st.session_state.messages.append({"role": "user", "content": full_prompt})
with st.chat_message("user"):
st.markdown(full_prompt)
# Generate response
with st.chat_message("assistant"):
messages = [{"role": "user", "content": full_prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.8, top_p=0.9)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
|