Upload apertus_ui.py with huggingface_hub
Browse files- apertus_ui.py +258 -0
apertus_ui.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import xml.etree.ElementTree as ET
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
# Coptic alphabet helper
|
| 9 |
+
COPTIC_ALPHABET = {
|
| 10 |
+
'Ⲁ': 'Alpha', 'Ⲃ': 'Beta', 'Ⲅ': 'Gamma', 'Ⲇ': 'Delta', 'Ⲉ': 'Epsilon', 'Ⲋ': 'Zeta',
|
| 11 |
+
'Ⲏ': 'Eta', 'Ⲑ': 'Theta', 'Ⲓ': 'Iota', 'Ⲕ': 'Kappa', 'Ⲗ': 'Lambda', 'Ⲙ': 'Mu',
|
| 12 |
+
'Ⲛ': 'Nu', 'Ⲝ': 'Xi', 'Ⲟ': 'Omicron', 'Ⲡ': 'Pi', 'Ⲣ': 'Rho', 'Ⲥ': 'Sigma',
|
| 13 |
+
'Ⲧ': 'Tau', 'Ⲩ': 'Upsilon', 'Ⲫ': 'Phi', 'Ⲭ': 'Chi', 'Ⲯ': 'Psi', 'Ⲱ': 'Omega',
|
| 14 |
+
'Ϣ': 'Shai', 'Ϥ': 'Fai', 'Ϧ': 'Khei', 'Ϩ': 'Hori', 'Ϫ': 'Gangia', 'Ϭ': 'Shima', 'Ϯ': 'Ti'
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
# Coptic linguistic prompts
|
| 18 |
+
COPTIC_PROMPTS = {
|
| 19 |
+
'dialect_analysis': "Analyze the Coptic dialect of this text and identify linguistic features:",
|
| 20 |
+
'translation': "Translate this Coptic text to English, preserving theological and cultural context:",
|
| 21 |
+
'transcription': "Provide a romanized transcription of this Coptic text:",
|
| 22 |
+
'morphology': "Analyze the morphological structure of these Coptic words:",
|
| 23 |
+
'lexicon_lookup': "Look up these Coptic words in the lexicon and provide Greek etymologies:"
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
# Lexicon loader
|
| 27 |
+
@st.cache_data
|
| 28 |
+
def load_coptic_lexicon(file_path=None):
|
| 29 |
+
"""Load Coptic lexicon from various formats including TEI XML"""
|
| 30 |
+
if not file_path or not os.path.exists(file_path):
|
| 31 |
+
return {}
|
| 32 |
+
|
| 33 |
+
lexicon = {}
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
# Handle XML format (TEI structure for Comprehensive Coptic Lexicon)
|
| 37 |
+
if file_path.endswith('.xml'):
|
| 38 |
+
tree = ET.parse(file_path)
|
| 39 |
+
root = tree.getroot()
|
| 40 |
+
|
| 41 |
+
# Handle TEI namespace
|
| 42 |
+
ns = {'tei': 'http://www.tei-c.org/ns/1.0'}
|
| 43 |
+
|
| 44 |
+
# Find entries in TEI format
|
| 45 |
+
entries = root.findall('.//tei:entry', ns)
|
| 46 |
+
|
| 47 |
+
for entry in entries[:100]: # Limit to first 100 entries for performance
|
| 48 |
+
coptic_word = ""
|
| 49 |
+
definition = ""
|
| 50 |
+
|
| 51 |
+
# Extract Coptic headword from TEI structure
|
| 52 |
+
form = entry.find('.//tei:form[@type="lemma"]', ns) or entry.find('.//tei:form', ns)
|
| 53 |
+
if form is not None:
|
| 54 |
+
orth = form.find('.//tei:orth', ns)
|
| 55 |
+
if orth is not None and orth.text:
|
| 56 |
+
coptic_word = orth.text.strip()
|
| 57 |
+
|
| 58 |
+
# Extract definition from sense elements
|
| 59 |
+
senses = entry.findall('.//tei:sense', ns)
|
| 60 |
+
definitions = []
|
| 61 |
+
for sense in senses[:2]: # Limit to first 2 senses
|
| 62 |
+
def_elem = sense.find('.//tei:def', ns)
|
| 63 |
+
if def_elem is not None and def_elem.text:
|
| 64 |
+
definitions.append(def_elem.text.strip())
|
| 65 |
+
|
| 66 |
+
if definitions:
|
| 67 |
+
definition = "; ".join(definitions)
|
| 68 |
+
|
| 69 |
+
# Clean and store
|
| 70 |
+
if coptic_word and definition:
|
| 71 |
+
# Clean Coptic word (preserve Coptic and Greek Unicode)
|
| 72 |
+
coptic_word = re.sub(r'[^\u2C80-\u2CFF\u03B0-\u03FF\u1F00-\u1FFF\w\s\-]', '', coptic_word).strip()
|
| 73 |
+
if coptic_word:
|
| 74 |
+
lexicon[coptic_word] = definition[:200] # Limit definition length
|
| 75 |
+
|
| 76 |
+
# Handle text formats
|
| 77 |
+
else:
|
| 78 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 79 |
+
for line in f:
|
| 80 |
+
line = line.strip()
|
| 81 |
+
if not line:
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
# Support multiple separators
|
| 85 |
+
separator = None
|
| 86 |
+
for sep in ['\t', '|', ',', ';']:
|
| 87 |
+
if sep in line:
|
| 88 |
+
separator = sep
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
if separator:
|
| 92 |
+
parts = line.split(separator, 1)
|
| 93 |
+
if len(parts) >= 2:
|
| 94 |
+
coptic_word = parts[0].strip()
|
| 95 |
+
definition = parts[1].strip()
|
| 96 |
+
lexicon[coptic_word] = definition
|
| 97 |
+
|
| 98 |
+
except Exception as e:
|
| 99 |
+
st.error(f"Error loading lexicon: {str(e)}")
|
| 100 |
+
|
| 101 |
+
return lexicon
|
| 102 |
+
|
| 103 |
+
# Language detection and UI
|
| 104 |
+
LANGUAGES = {
|
| 105 |
+
'en': 'English', 'es': 'Español', 'fr': 'Français', 'de': 'Deutsch',
|
| 106 |
+
'zh': '中文', 'ja': '日本語', 'ar': 'العربية', 'hi': 'हिन्दी',
|
| 107 |
+
'cop': 'Coptic (ⲘⲉⲧⲢⲉⲙ̀ⲛⲭⲏⲙⲓ)', 'cop-sa': 'Sahidic Coptic', 'cop-bo': 'Bohairic Coptic'
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
st.set_page_config(page_title="Apertus Chat", layout="wide")
|
| 111 |
+
|
| 112 |
+
# Language selector
|
| 113 |
+
selected_lang = st.selectbox("Language / Langue / Idioma",
|
| 114 |
+
options=list(LANGUAGES.keys()),
|
| 115 |
+
format_func=lambda x: LANGUAGES[x])
|
| 116 |
+
|
| 117 |
+
# Sidebar for Coptic tools
|
| 118 |
+
with st.sidebar:
|
| 119 |
+
st.header("Coptic Tools")
|
| 120 |
+
|
| 121 |
+
# Lexicon file uploader
|
| 122 |
+
lexicon_file = st.file_uploader("Upload Coptic Lexicon",
|
| 123 |
+
type=['txt', 'tsv', 'csv', 'xml'],
|
| 124 |
+
help="Supports: Text (TAB/pipe separated), XML (Crum format), CSV")
|
| 125 |
+
|
| 126 |
+
# Load lexicon
|
| 127 |
+
if lexicon_file:
|
| 128 |
+
# Save uploaded file temporarily
|
| 129 |
+
with open("temp_lexicon.txt", "wb") as f:
|
| 130 |
+
f.write(lexicon_file.getbuffer())
|
| 131 |
+
coptic_lexicon = load_coptic_lexicon("temp_lexicon.txt")
|
| 132 |
+
st.success(f"Loaded {len(coptic_lexicon)} lexicon entries")
|
| 133 |
+
else:
|
| 134 |
+
# Try to load the comprehensive lexicon if available
|
| 135 |
+
comprehensive_lexicon_path = "Comprehensive_Coptic_Lexicon-v1.2-2020.xml"
|
| 136 |
+
if os.path.exists(comprehensive_lexicon_path):
|
| 137 |
+
coptic_lexicon = load_coptic_lexicon(comprehensive_lexicon_path)
|
| 138 |
+
if coptic_lexicon:
|
| 139 |
+
st.info(f"Loaded Comprehensive Coptic Lexicon: {len(coptic_lexicon)} entries")
|
| 140 |
+
else:
|
| 141 |
+
coptic_lexicon = {}
|
| 142 |
+
else:
|
| 143 |
+
coptic_lexicon = {}
|
| 144 |
+
|
| 145 |
+
# Coptic alphabet reference
|
| 146 |
+
if st.expander("Coptic Alphabet"):
|
| 147 |
+
for letter, name in COPTIC_ALPHABET.items():
|
| 148 |
+
st.text(f"{letter} - {name}")
|
| 149 |
+
|
| 150 |
+
# Lexicon search
|
| 151 |
+
if coptic_lexicon:
|
| 152 |
+
st.subheader("Lexicon Search")
|
| 153 |
+
|
| 154 |
+
# Virtual Coptic keyboard
|
| 155 |
+
st.write("**Virtual Keyboard:**")
|
| 156 |
+
coptic_letters = ['ⲁ', 'ⲃ', 'ⲅ', 'ⲇ', 'ⲉ', 'ⲍ', 'ⲏ', 'ⲑ', 'ⲓ', 'ⲕ', 'ⲗ', 'ⲙ', 'ⲛ', 'ⲝ', 'ⲟ', 'ⲡ', 'ⲣ', 'ⲥ', 'ⲧ', 'ⲩ', 'ⲫ', 'ⲭ', 'ⲯ', 'ⲱ', 'ϣ', 'ϥ', 'ϧ', 'ϩ', 'ϫ', 'ϭ', 'ϯ']
|
| 157 |
+
|
| 158 |
+
# Create keyboard layout in rows
|
| 159 |
+
cols1 = st.columns(8)
|
| 160 |
+
cols2 = st.columns(8)
|
| 161 |
+
cols3 = st.columns(8)
|
| 162 |
+
cols4 = st.columns(8)
|
| 163 |
+
|
| 164 |
+
keyboard_input = ""
|
| 165 |
+
for i, letter in enumerate(coptic_letters):
|
| 166 |
+
col_idx = i % 8
|
| 167 |
+
if i < 8:
|
| 168 |
+
if cols1[col_idx].button(letter, key=f"key_{letter}"):
|
| 169 |
+
keyboard_input = letter
|
| 170 |
+
elif i < 16:
|
| 171 |
+
if cols2[col_idx].button(letter, key=f"key_{letter}"):
|
| 172 |
+
keyboard_input = letter
|
| 173 |
+
elif i < 24:
|
| 174 |
+
if cols3[col_idx].button(letter, key=f"key_{letter}"):
|
| 175 |
+
keyboard_input = letter
|
| 176 |
+
else:
|
| 177 |
+
if cols4[col_idx].button(letter, key=f"key_{letter}"):
|
| 178 |
+
keyboard_input = letter
|
| 179 |
+
|
| 180 |
+
# Search input
|
| 181 |
+
search_term = st.text_input("Search Coptic word:", value=keyboard_input if keyboard_input else "")
|
| 182 |
+
|
| 183 |
+
if search_term:
|
| 184 |
+
if search_term in coptic_lexicon:
|
| 185 |
+
st.write(f"**{search_term}**")
|
| 186 |
+
st.write(coptic_lexicon[search_term])
|
| 187 |
+
else:
|
| 188 |
+
# Partial matches
|
| 189 |
+
matches = [k for k in coptic_lexicon.keys() if search_term in k]
|
| 190 |
+
if matches:
|
| 191 |
+
st.write("Partial matches:")
|
| 192 |
+
for match in matches[:5]: # Show first 5 matches
|
| 193 |
+
st.write(f"**{match}** → {coptic_lexicon[match][:100]}...")
|
| 194 |
+
else:
|
| 195 |
+
st.write("No matches found")
|
| 196 |
+
|
| 197 |
+
# Linguistic analysis options
|
| 198 |
+
if selected_lang in ['cop', 'cop-sa', 'cop-bo']:
|
| 199 |
+
st.subheader("Analysis Type")
|
| 200 |
+
analysis_type = st.selectbox("Choose analysis:",
|
| 201 |
+
options=list(COPTIC_PROMPTS.keys()),
|
| 202 |
+
format_func=lambda x: x.replace('_', ' ').title())
|
| 203 |
+
|
| 204 |
+
# Load model (cached)
|
| 205 |
+
@st.cache_resource
|
| 206 |
+
def load_model():
|
| 207 |
+
model_path = "/home/aldn/Téléchargements/Apertus8B"
|
| 208 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 209 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16)
|
| 210 |
+
return tokenizer, model
|
| 211 |
+
|
| 212 |
+
tokenizer, model = load_model()
|
| 213 |
+
|
| 214 |
+
# Chat interface
|
| 215 |
+
if "messages" not in st.session_state:
|
| 216 |
+
st.session_state.messages = []
|
| 217 |
+
|
| 218 |
+
# Display chat history
|
| 219 |
+
for message in st.session_state.messages:
|
| 220 |
+
with st.chat_message(message["role"]):
|
| 221 |
+
st.markdown(message["content"])
|
| 222 |
+
|
| 223 |
+
# User input
|
| 224 |
+
if prompt := st.chat_input("Type your message..."):
|
| 225 |
+
# Add Coptic-specific prompt prefix if applicable
|
| 226 |
+
if selected_lang in ['cop', 'cop-sa', 'cop-bo'] and 'analysis_type' in locals():
|
| 227 |
+
full_prompt = f"{COPTIC_PROMPTS[analysis_type]} {prompt}"
|
| 228 |
+
|
| 229 |
+
# Add lexicon context for lexicon lookup
|
| 230 |
+
if analysis_type == 'lexicon_lookup' and coptic_lexicon:
|
| 231 |
+
words_in_prompt = prompt.split()
|
| 232 |
+
lexicon_matches = []
|
| 233 |
+
for word in words_in_prompt:
|
| 234 |
+
if word in coptic_lexicon:
|
| 235 |
+
lexicon_matches.append(f"{word} = {coptic_lexicon[word]}")
|
| 236 |
+
|
| 237 |
+
if lexicon_matches:
|
| 238 |
+
full_prompt += f"\n\nLexicon entries found: {'; '.join(lexicon_matches)}"
|
| 239 |
+
else:
|
| 240 |
+
full_prompt = prompt
|
| 241 |
+
|
| 242 |
+
st.session_state.messages.append({"role": "user", "content": full_prompt})
|
| 243 |
+
|
| 244 |
+
with st.chat_message("user"):
|
| 245 |
+
st.markdown(full_prompt)
|
| 246 |
+
|
| 247 |
+
# Generate response
|
| 248 |
+
with st.chat_message("assistant"):
|
| 249 |
+
messages = [{"role": "user", "content": full_prompt}]
|
| 250 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 251 |
+
inputs = tokenizer([text], return_tensors="pt")
|
| 252 |
+
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.8, top_p=0.9)
|
| 255 |
+
|
| 256 |
+
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
| 257 |
+
st.markdown(response)
|
| 258 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|