Rogaton
commited on
Commit
Β·
5461265
1
Parent(s):
cc8e202
Add automatic model upload to HuggingFace Hub
Browse files
hf_space_megalaa_training/app.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
HuggingFace Space for fine-tuning megalaa Coptic translation model
|
| 4 |
+
|
| 5 |
+
This Gradio app provides a user-friendly interface for training the
|
| 6 |
+
megalaa/coptic-english-translator model on your CopticScriptorium corpus.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import os
|
| 11 |
+
import subprocess
|
| 12 |
+
import threading
|
| 13 |
+
import time
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
# Global variable to track training status
|
| 17 |
+
training_status = {
|
| 18 |
+
"running": False,
|
| 19 |
+
"log": [],
|
| 20 |
+
"completed": False,
|
| 21 |
+
"error": None
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def train_model(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name):
|
| 26 |
+
"""
|
| 27 |
+
Start model training with uploaded data files
|
| 28 |
+
"""
|
| 29 |
+
global training_status
|
| 30 |
+
|
| 31 |
+
# Reset status
|
| 32 |
+
training_status = {
|
| 33 |
+
"running": True,
|
| 34 |
+
"log": ["π Starting training setup...\n"],
|
| 35 |
+
"completed": False,
|
| 36 |
+
"error": None
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
# Save uploaded files
|
| 41 |
+
train_path = "train.jsonl"
|
| 42 |
+
val_path = "val.jsonl"
|
| 43 |
+
|
| 44 |
+
with open(train_path, "wb") as f:
|
| 45 |
+
f.write(train_file)
|
| 46 |
+
with open(val_path, "wb") as f:
|
| 47 |
+
f.write(val_file)
|
| 48 |
+
|
| 49 |
+
training_status["log"].append(f"β Training data saved: {train_path}\n")
|
| 50 |
+
training_status["log"].append(f"β Validation data saved: {val_path}\n")
|
| 51 |
+
|
| 52 |
+
# Create training script
|
| 53 |
+
script_content = f'''#!/usr/bin/env python3
|
| 54 |
+
import os
|
| 55 |
+
import json
|
| 56 |
+
import torch
|
| 57 |
+
from datasets import load_dataset
|
| 58 |
+
from transformers import (
|
| 59 |
+
AutoTokenizer,
|
| 60 |
+
AutoModelForSeq2SeqLM,
|
| 61 |
+
Seq2SeqTrainingArguments,
|
| 62 |
+
Seq2SeqTrainer,
|
| 63 |
+
DataCollatorForSeq2Seq,
|
| 64 |
+
)
|
| 65 |
+
from huggingface_hub import HfApi, login
|
| 66 |
+
from evaluate import load
|
| 67 |
+
import numpy as np
|
| 68 |
+
import logging
|
| 69 |
+
|
| 70 |
+
logging.basicConfig(level=logging.INFO)
|
| 71 |
+
logger = logging.getLogger(__name__)
|
| 72 |
+
|
| 73 |
+
# HuggingFace Hub configuration
|
| 74 |
+
HF_TOKEN = "{hf_token}"
|
| 75 |
+
MODEL_REPO_NAME = "{model_repo_name}"
|
| 76 |
+
|
| 77 |
+
if HF_TOKEN:
|
| 78 |
+
login(token=HF_TOKEN)
|
| 79 |
+
logger.info("β Logged in to HuggingFace Hub")
|
| 80 |
+
|
| 81 |
+
# Greekification for megalaa models
|
| 82 |
+
COPTIC_TO_GREEK = {{
|
| 83 |
+
"β²": "Ξ±", "β²": "Ξ²", "β²
": "Ξ³", "β²": "Ξ΄", "β²": "Ξ΅", "β²": "Ο",
|
| 84 |
+
"β²": "ΞΆ", "β²": "Ξ·", "β²": "ΞΈ", "β²": "ΞΉ", "β²": "ΞΊ", "β²": "Ξ»",
|
| 85 |
+
"β²": "ΞΌ", "β²": "Ξ½", "β²": "ΞΎ", "β²": "ΞΏ", "ⲑ": "Ο", "β²£": "Ο",
|
| 86 |
+
"β²₯": "Ο", "β²§": "Ο", "ⲩ": "Ο
", "ⲫ": "Ο", "β²": "Ο", "β²―": "Ο",
|
| 87 |
+
"β²±": "Ο", "Ο£": "s", "Ο₯": "f", "Ο§": "k", "Ο©": "h", "Ο«": "j",
|
| 88 |
+
"Ο": "c", "Ο―": "t",
|
| 89 |
+
}}
|
| 90 |
+
|
| 91 |
+
def greekify(text):
|
| 92 |
+
if not text:
|
| 93 |
+
return ""
|
| 94 |
+
return "".join(COPTIC_TO_GREEK.get(c.lower(), c.lower()) for c in text)
|
| 95 |
+
|
| 96 |
+
def extract_parallel_texts(examples):
|
| 97 |
+
coptic_texts = []
|
| 98 |
+
english_texts = []
|
| 99 |
+
|
| 100 |
+
for messages in examples['messages']:
|
| 101 |
+
coptic_text = None
|
| 102 |
+
english_text = None
|
| 103 |
+
|
| 104 |
+
for msg in messages:
|
| 105 |
+
if msg['role'] == 'user' and 'Coptic text to English:' in msg['content']:
|
| 106 |
+
coptic_text = msg['content'].split('Coptic text to English:')[-1].strip()
|
| 107 |
+
elif msg['role'] == 'assistant':
|
| 108 |
+
english_text = msg['content']
|
| 109 |
+
|
| 110 |
+
coptic_texts.append(coptic_text)
|
| 111 |
+
english_texts.append(english_text)
|
| 112 |
+
|
| 113 |
+
return {{'coptic': coptic_texts, 'english': english_texts}}
|
| 114 |
+
|
| 115 |
+
def preprocess_function(examples, tokenizer, max_length=256):
|
| 116 |
+
greekified_coptic = [greekify(text.lower()) if text else "" for text in examples["coptic"]]
|
| 117 |
+
|
| 118 |
+
model_inputs = tokenizer(
|
| 119 |
+
greekified_coptic,
|
| 120 |
+
max_length=max_length,
|
| 121 |
+
truncation=True,
|
| 122 |
+
padding="max_length"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
labels = tokenizer(
|
| 126 |
+
text_target=examples["english"],
|
| 127 |
+
max_length=max_length,
|
| 128 |
+
truncation=True,
|
| 129 |
+
padding="max_length"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
labels["input_ids"] = [
|
| 133 |
+
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
|
| 134 |
+
for labels_example in labels["input_ids"]
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
+
model_inputs["labels"] = labels["input_ids"]
|
| 138 |
+
return model_inputs
|
| 139 |
+
|
| 140 |
+
def compute_metrics(eval_preds, tokenizer, metric):
|
| 141 |
+
preds, labels = eval_preds
|
| 142 |
+
|
| 143 |
+
if isinstance(preds, tuple):
|
| 144 |
+
preds = preds[0]
|
| 145 |
+
|
| 146 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 147 |
+
|
| 148 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
| 149 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 150 |
+
decoded_labels = [[label] for label in decoded_labels]
|
| 151 |
+
|
| 152 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
| 153 |
+
return {{"bleu": result["score"]}}
|
| 154 |
+
|
| 155 |
+
# Configuration
|
| 156 |
+
model_name = "megalaa/coptic-english-translator"
|
| 157 |
+
output_dir = "coptic_megalaa_finetuned"
|
| 158 |
+
num_epochs = {num_epochs}
|
| 159 |
+
batch_size = {batch_size}
|
| 160 |
+
learning_rate = {learning_rate}
|
| 161 |
+
|
| 162 |
+
logger.info("="*60)
|
| 163 |
+
logger.info("MEGALAA FINE-TUNING ON HUGGINGFACE SPACES")
|
| 164 |
+
logger.info("="*60)
|
| 165 |
+
logger.info(f"Base model: {{model_name}}")
|
| 166 |
+
logger.info(f"Epochs: {{num_epochs}}")
|
| 167 |
+
logger.info(f"Batch size: {{batch_size}}")
|
| 168 |
+
logger.info(f"Learning rate: {{learning_rate}}")
|
| 169 |
+
|
| 170 |
+
# Check GPU
|
| 171 |
+
if torch.cuda.is_available():
|
| 172 |
+
logger.info(f"GPU: {{torch.cuda.get_device_name(0)}}")
|
| 173 |
+
logger.info(f"GPU Memory: {{torch.cuda.get_device_properties(0).total_memory / (1024**3):.1f}} GB")
|
| 174 |
+
else:
|
| 175 |
+
logger.warning("No GPU detected!")
|
| 176 |
+
|
| 177 |
+
# Load model
|
| 178 |
+
logger.info("\\nLoading model...")
|
| 179 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 180 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 181 |
+
|
| 182 |
+
# Load datasets
|
| 183 |
+
logger.info("Loading datasets...")
|
| 184 |
+
train_dataset = load_dataset('json', data_files='{train_path}', split='train')
|
| 185 |
+
val_dataset = load_dataset('json', data_files='{val_path}', split='train')
|
| 186 |
+
|
| 187 |
+
logger.info(f"Train samples: {{len(train_dataset):,}}")
|
| 188 |
+
logger.info(f"Validation samples: {{len(val_dataset):,}}")
|
| 189 |
+
|
| 190 |
+
# Extract and tokenize
|
| 191 |
+
logger.info("Processing datasets...")
|
| 192 |
+
train_dataset = train_dataset.map(extract_parallel_texts, batched=True, remove_columns=['messages'])
|
| 193 |
+
val_dataset = val_dataset.map(extract_parallel_texts, batched=True, remove_columns=['messages'])
|
| 194 |
+
|
| 195 |
+
tokenized_train = train_dataset.map(
|
| 196 |
+
lambda examples: preprocess_function(examples, tokenizer),
|
| 197 |
+
batched=True,
|
| 198 |
+
remove_columns=['coptic', 'english']
|
| 199 |
+
)
|
| 200 |
+
tokenized_val = val_dataset.map(
|
| 201 |
+
lambda examples: preprocess_function(examples, tokenizer),
|
| 202 |
+
batched=True,
|
| 203 |
+
remove_columns=['coptic', 'english']
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Setup training
|
| 207 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, padding=True)
|
| 208 |
+
metric = load("sacrebleu")
|
| 209 |
+
|
| 210 |
+
training_args = Seq2SeqTrainingArguments(
|
| 211 |
+
output_dir=output_dir,
|
| 212 |
+
num_train_epochs=num_epochs,
|
| 213 |
+
per_device_train_batch_size=batch_size,
|
| 214 |
+
per_device_eval_batch_size=batch_size,
|
| 215 |
+
gradient_accumulation_steps=2,
|
| 216 |
+
learning_rate=learning_rate,
|
| 217 |
+
warmup_steps=500,
|
| 218 |
+
max_grad_norm=1.0,
|
| 219 |
+
weight_decay=0.01,
|
| 220 |
+
eval_strategy="steps",
|
| 221 |
+
eval_steps=500,
|
| 222 |
+
logging_steps=50,
|
| 223 |
+
save_steps=500,
|
| 224 |
+
save_total_limit=3,
|
| 225 |
+
load_best_model_at_end=True,
|
| 226 |
+
metric_for_best_model="bleu",
|
| 227 |
+
greater_is_better=True,
|
| 228 |
+
predict_with_generate=True,
|
| 229 |
+
generation_max_length=256,
|
| 230 |
+
generation_num_beams=5,
|
| 231 |
+
fp16=torch.cuda.is_available(),
|
| 232 |
+
report_to="tensorboard",
|
| 233 |
+
logging_dir=f"{{output_dir}}/logs",
|
| 234 |
+
push_to_hub=False,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
trainer = Seq2SeqTrainer(
|
| 238 |
+
model=model,
|
| 239 |
+
args=training_args,
|
| 240 |
+
train_dataset=tokenized_train,
|
| 241 |
+
eval_dataset=tokenized_val,
|
| 242 |
+
tokenizer=tokenizer,
|
| 243 |
+
data_collator=data_collator,
|
| 244 |
+
compute_metrics=lambda eval_preds: compute_metrics(eval_preds, tokenizer, metric)
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
logger.info("\\nSTARTING TRAINING")
|
| 248 |
+
logger.info("="*60)
|
| 249 |
+
|
| 250 |
+
# Train
|
| 251 |
+
trainer.train()
|
| 252 |
+
|
| 253 |
+
# Save locally
|
| 254 |
+
logger.info("\\nSaving final model...")
|
| 255 |
+
trainer.save_model(f"{{output_dir}}/final")
|
| 256 |
+
tokenizer.save_pretrained(f"{{output_dir}}/final")
|
| 257 |
+
|
| 258 |
+
# Push to HuggingFace Hub
|
| 259 |
+
if HF_TOKEN and MODEL_REPO_NAME:
|
| 260 |
+
logger.info(f"\\nPushing model to HuggingFace Hub: {{MODEL_REPO_NAME}}")
|
| 261 |
+
try:
|
| 262 |
+
api = HfApi()
|
| 263 |
+
api.create_repo(repo_id=MODEL_REPO_NAME, repo_type="model", exist_ok=True)
|
| 264 |
+
|
| 265 |
+
# Upload all files
|
| 266 |
+
api.upload_folder(
|
| 267 |
+
folder_path=f"{{output_dir}}/final",
|
| 268 |
+
repo_id=MODEL_REPO_NAME,
|
| 269 |
+
repo_type="model",
|
| 270 |
+
)
|
| 271 |
+
logger.info(f"β
Model successfully pushed to: https://huggingface.co/{{MODEL_REPO_NAME}}")
|
| 272 |
+
except Exception as e:
|
| 273 |
+
logger.error(f"β Failed to push to Hub: {{e}}")
|
| 274 |
+
|
| 275 |
+
# Final evaluation
|
| 276 |
+
logger.info("\\nFinal evaluation...")
|
| 277 |
+
eval_results = trainer.evaluate()
|
| 278 |
+
|
| 279 |
+
logger.info("\\n" + "="*60)
|
| 280 |
+
logger.info("TRAINING COMPLETE!")
|
| 281 |
+
logger.info("="*60)
|
| 282 |
+
for key, value in eval_results.items():
|
| 283 |
+
logger.info(f"{{key}}: {{value}}")
|
| 284 |
+
|
| 285 |
+
logger.info(f"\\nβ
Model saved locally to: {{output_dir}}/final")
|
| 286 |
+
if HF_TOKEN and MODEL_REPO_NAME:
|
| 287 |
+
logger.info(f"β
Model available at: https://huggingface.co/{{MODEL_REPO_NAME}}")
|
| 288 |
+
'''
|
| 289 |
+
|
| 290 |
+
with open("train_script.py", "w") as f:
|
| 291 |
+
f.write(script_content)
|
| 292 |
+
|
| 293 |
+
training_status["log"].append("β Training script created\n")
|
| 294 |
+
training_status["log"].append("π Starting training...\n\n")
|
| 295 |
+
|
| 296 |
+
# Run training in subprocess
|
| 297 |
+
process = subprocess.Popen(
|
| 298 |
+
["python", "train_script.py"],
|
| 299 |
+
stdout=subprocess.PIPE,
|
| 300 |
+
stderr=subprocess.STDOUT,
|
| 301 |
+
text=True,
|
| 302 |
+
bufsize=1
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# Stream output
|
| 306 |
+
for line in process.stdout:
|
| 307 |
+
training_status["log"].append(line)
|
| 308 |
+
time.sleep(0.01) # Small delay to allow UI updates
|
| 309 |
+
|
| 310 |
+
process.wait()
|
| 311 |
+
|
| 312 |
+
if process.returncode == 0:
|
| 313 |
+
training_status["completed"] = True
|
| 314 |
+
training_status["log"].append("\n\nβ
TRAINING COMPLETED SUCCESSFULLY!\n")
|
| 315 |
+
training_status["log"].append("π¦ Model saved locally to: coptic_megalaa_finetuned/final\n")
|
| 316 |
+
if hf_token and model_repo_name:
|
| 317 |
+
training_status["log"].append(f"π¦ Model pushed to: https://huggingface.co/{model_repo_name}\n")
|
| 318 |
+
else:
|
| 319 |
+
training_status["error"] = f"Training failed with exit code {process.returncode}"
|
| 320 |
+
training_status["log"].append(f"\n\nβ Training failed with exit code {process.returncode}\n")
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
training_status["error"] = str(e)
|
| 324 |
+
training_status["log"].append(f"\n\nβ Error: {str(e)}\n")
|
| 325 |
+
|
| 326 |
+
finally:
|
| 327 |
+
training_status["running"] = False
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def start_training(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name):
|
| 331 |
+
"""
|
| 332 |
+
Start training in background thread
|
| 333 |
+
"""
|
| 334 |
+
if training_status["running"]:
|
| 335 |
+
return "β οΈ Training already in progress!"
|
| 336 |
+
|
| 337 |
+
if not hf_token or not model_repo_name:
|
| 338 |
+
return "β οΈ Please provide both HuggingFace Token and Model Repository Name!"
|
| 339 |
+
|
| 340 |
+
# Start training thread
|
| 341 |
+
thread = threading.Thread(
|
| 342 |
+
target=train_model,
|
| 343 |
+
args=(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name)
|
| 344 |
+
)
|
| 345 |
+
thread.daemon = True
|
| 346 |
+
thread.start()
|
| 347 |
+
|
| 348 |
+
return "π Training started! Monitor progress in the logs below."
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def get_training_log():
|
| 352 |
+
"""
|
| 353 |
+
Return current training log
|
| 354 |
+
"""
|
| 355 |
+
return "".join(training_status["log"])
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def check_status():
|
| 359 |
+
"""
|
| 360 |
+
Return training status
|
| 361 |
+
"""
|
| 362 |
+
if training_status["completed"]:
|
| 363 |
+
return "β
Training completed!"
|
| 364 |
+
elif training_status["error"]:
|
| 365 |
+
return f"β Error: {training_status['error']}"
|
| 366 |
+
elif training_status["running"]:
|
| 367 |
+
return "π Training in progress..."
|
| 368 |
+
else:
|
| 369 |
+
return "βΈοΈ Ready to train"
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
# Create Gradio interface
|
| 373 |
+
with gr.Blocks(title="Megalaa Coptic Fine-tuning") as demo:
|
| 374 |
+
gr.Markdown("""
|
| 375 |
+
# ποΈ Megalaa Coptic Translation Fine-tuning
|
| 376 |
+
|
| 377 |
+
Fine-tune the megalaa/coptic-english-translator model on your CopticScriptorium corpus.
|
| 378 |
+
|
| 379 |
+
**βοΈ IMPORTANT:** Make sure this Space is running on **T4 Small GPU** for optimal performance!
|
| 380 |
+
""")
|
| 381 |
+
|
| 382 |
+
with gr.Row():
|
| 383 |
+
with gr.Column():
|
| 384 |
+
gr.Markdown("### π HuggingFace Hub Configuration")
|
| 385 |
+
hf_token_input = gr.Textbox(
|
| 386 |
+
label="HuggingFace Token",
|
| 387 |
+
placeholder="hf_...",
|
| 388 |
+
type="password",
|
| 389 |
+
info="Get your token from https://huggingface.co/settings/tokens"
|
| 390 |
+
)
|
| 391 |
+
model_repo_input = gr.Textbox(
|
| 392 |
+
label="Model Repository Name",
|
| 393 |
+
placeholder="username/coptic-megalaa-finetuned",
|
| 394 |
+
info="Example: john-doe/coptic-megalaa-finetuned"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
gr.Markdown("### π€ Upload Training Data")
|
| 398 |
+
train_file_upload = gr.File(
|
| 399 |
+
label="Training Data (train.jsonl)",
|
| 400 |
+
file_types=[".jsonl"]
|
| 401 |
+
)
|
| 402 |
+
val_file_upload = gr.File(
|
| 403 |
+
label="Validation Data (val.jsonl)",
|
| 404 |
+
file_types=[".jsonl"]
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
gr.Markdown("### βοΈ Training Parameters")
|
| 408 |
+
num_epochs = gr.Slider(
|
| 409 |
+
minimum=1,
|
| 410 |
+
maximum=10,
|
| 411 |
+
value=5,
|
| 412 |
+
step=1,
|
| 413 |
+
label="Number of Epochs"
|
| 414 |
+
)
|
| 415 |
+
batch_size = gr.Slider(
|
| 416 |
+
minimum=4,
|
| 417 |
+
maximum=16,
|
| 418 |
+
value=8,
|
| 419 |
+
step=4,
|
| 420 |
+
label="Batch Size"
|
| 421 |
+
)
|
| 422 |
+
learning_rate = gr.Number(
|
| 423 |
+
value=2e-5,
|
| 424 |
+
label="Learning Rate"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
start_btn = gr.Button("π Start Training", variant="primary", size="lg")
|
| 428 |
+
status_text = gr.Textbox(label="Status", value="βΈοΈ Ready to train")
|
| 429 |
+
|
| 430 |
+
with gr.Column():
|
| 431 |
+
gr.Markdown("### π Training Log")
|
| 432 |
+
log_output = gr.Textbox(
|
| 433 |
+
label="Real-time Training Log",
|
| 434 |
+
lines=30,
|
| 435 |
+
max_lines=30,
|
| 436 |
+
autoscroll=True,
|
| 437 |
+
every=2
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Button actions
|
| 441 |
+
start_btn.click(
|
| 442 |
+
fn=start_training,
|
| 443 |
+
inputs=[train_file_upload, val_file_upload, num_epochs, batch_size, learning_rate, hf_token_input, model_repo_input],
|
| 444 |
+
outputs=status_text
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# Auto-refresh log and status
|
| 448 |
+
demo.load(fn=get_training_log, outputs=log_output, every=2)
|
| 449 |
+
demo.load(fn=check_status, outputs=status_text, every=2)
|
| 450 |
+
|
| 451 |
+
gr.Markdown("""
|
| 452 |
+
---
|
| 453 |
+
### π₯ After Training
|
| 454 |
+
|
| 455 |
+
When training completes, your fine-tuned model will be automatically pushed to HuggingFace Hub!
|
| 456 |
+
|
| 457 |
+
**Next steps:**
|
| 458 |
+
1. Visit your model repository at `https://huggingface.co/YOUR_USERNAME/MODEL_NAME`
|
| 459 |
+
2. Download and test with: `python evaluate_megalaa_model.py`
|
| 460 |
+
3. Integrate into your Coptic translation interface
|
| 461 |
+
4. Share your model with the community!
|
| 462 |
+
|
| 463 |
+
**Estimated training time:** 6-8 hours on T4 GPU
|
| 464 |
+
|
| 465 |
+
**Note:** The model is also saved temporarily to `coptic_megalaa_finetuned/final/` during training,
|
| 466 |
+
but this local copy will be lost when the Space restarts. Use the HuggingFace Hub version!
|
| 467 |
+
""")
|
| 468 |
+
|
| 469 |
+
if __name__ == "__main__":
|
| 470 |
+
demo.launch()
|
hf_space_megalaa_training/requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
transformers>=4.35.0
|
| 3 |
+
datasets>=2.14.0
|
| 4 |
+
accelerate>=0.24.0
|
| 5 |
+
evaluate>=0.4.1
|
| 6 |
+
sacrebleu>=2.3.1
|
| 7 |
+
sentencepiece>=0.1.99
|
| 8 |
+
protobuf>=3.20.0
|
| 9 |
+
gradio>=4.44.0
|
| 10 |
+
tensorboard>=2.15.0
|
| 11 |
+
huggingface_hub>=0.20.0
|