Update app.py
Browse files
app.py
CHANGED
|
@@ -4,18 +4,14 @@ import signal
|
|
| 4 |
import tempfile
|
| 5 |
from pathlib import Path
|
| 6 |
from textwrap import dedent
|
| 7 |
-
from typing import Optional
|
| 8 |
from dataclasses import dataclass, field
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
from datasets import load_dataset
|
| 12 |
from huggingface_hub import HfApi, ModelCard, whoami
|
| 13 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 14 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 15 |
|
| 16 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 17 |
|
| 18 |
-
# ----------------- CONFIG DATACLASSES -----------------
|
| 19 |
@dataclass
|
| 20 |
class QuantizationConfig:
|
| 21 |
method: str
|
|
@@ -35,7 +31,7 @@ class QuantizationConfig:
|
|
| 35 |
class SplitConfig:
|
| 36 |
enabled: bool = False
|
| 37 |
max_tensors: int = 256
|
| 38 |
-
max_size:
|
| 39 |
|
| 40 |
@dataclass
|
| 41 |
class OutputConfig:
|
|
@@ -55,57 +51,46 @@ class ModelProcessingConfig:
|
|
| 55 |
new_repo_url: str = field(default="", init=False)
|
| 56 |
new_repo_id: str = field(default="", init=False)
|
| 57 |
|
| 58 |
-
# ----------------- EXCEPTIONS -----------------
|
| 59 |
class GGUFConverterError(Exception):
|
| 60 |
pass
|
| 61 |
|
| 62 |
-
# ----------------- PROCESSOR -----------------
|
| 63 |
class HuggingFaceModelProcessor:
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
DOWNLOAD_FOLDER = "./downloads"
|
| 66 |
OUTPUT_FOLDER = "./outputs"
|
| 67 |
CALIBRATION_FILE = "calibration_data_v5_rc.txt"
|
| 68 |
-
QUANTIZE_TIMEOUT=86400
|
| 69 |
-
HF_TO_GGUF_TIMEOUT=3600
|
| 70 |
-
IMATRIX_TIMEOUT=86400
|
| 71 |
-
SPLIT_TIMEOUT=3600
|
| 72 |
-
KILL_TIMEOUT=5
|
| 73 |
|
| 74 |
def __init__(self):
|
| 75 |
self.HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 76 |
-
self.RUN_LOCALLY = os.environ.get("RUN_LOCALLY")
|
| 77 |
self._create_folder(self.DOWNLOAD_FOLDER)
|
| 78 |
self._create_folder(self.OUTPUT_FOLDER)
|
| 79 |
|
| 80 |
-
def _create_folder(self, folder_name: str)
|
| 81 |
if not os.path.exists(folder_name):
|
| 82 |
os.makedirs(folder_name)
|
| 83 |
return folder_name
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
print("Dataset cargado correctamente")
|
| 90 |
-
return ds
|
| 91 |
|
| 92 |
-
|
| 93 |
-
def _download_base_model(self, processing_config: ModelProcessingConfig) -> str:
|
| 94 |
-
"""Descarga y convierte HuggingFace -> GGUF FP16"""
|
| 95 |
print(f"Descargando modelo {processing_config.model_name}")
|
| 96 |
if os.path.exists(processing_config.quant_config.fp16_model):
|
| 97 |
-
print("FP16 ya existe, omitiendo
|
| 98 |
return processing_config.quant_config.fp16_model
|
| 99 |
|
| 100 |
with tempfile.TemporaryDirectory(dir=self.DOWNLOAD_FOLDER) as tmpdir:
|
| 101 |
local_dir = f"{Path(tmpdir)}/{processing_config.model_name}"
|
| 102 |
api = HfApi(token=processing_config.token)
|
| 103 |
-
pattern = "*.safetensors"
|
| 104 |
-
|
| 105 |
-
for file in api.list_repo_tree(repo_id=processing_config.model_id, recursive=True)
|
| 106 |
-
) else "*.bin"
|
| 107 |
-
dl_pattern = ["*.md", "*.json", "*.model"] + [pattern]
|
| 108 |
-
api.snapshot_download(repo_id=processing_config.model_id, local_dir=local_dir, allow_patterns=dl_pattern)
|
| 109 |
convert_command = [
|
| 110 |
"python3", "/app/convert_hf_to_gguf.py", local_dir,
|
| 111 |
"--outtype", "f16", "--outfile", processing_config.quant_config.fp16_model
|
|
@@ -119,13 +104,13 @@ class HuggingFaceModelProcessor:
|
|
| 119 |
process.wait(timeout=self.KILL_TIMEOUT)
|
| 120 |
except subprocess.TimeoutExpired:
|
| 121 |
process.kill()
|
| 122 |
-
raise GGUFConverterError("Error convirtiendo a
|
| 123 |
if process.returncode != 0:
|
| 124 |
-
raise GGUFConverterError(f"Error convirtiendo a
|
|
|
|
| 125 |
return processing_config.quant_config.fp16_model
|
| 126 |
|
| 127 |
-
|
| 128 |
-
def _quantize_model(self, quant_config: QuantizationConfig) -> str:
|
| 129 |
quantize_cmd = ["llama-quantize"]
|
| 130 |
if quant_config.quant_embedding:
|
| 131 |
quantize_cmd.extend(["--token-embedding-type", quant_config.embedding_tensor_method])
|
|
@@ -135,11 +120,11 @@ class HuggingFaceModelProcessor:
|
|
| 135 |
if quant_config.quant_output:
|
| 136 |
quantize_cmd.extend(["--output-tensor-type", quant_config.output_tensor_method])
|
| 137 |
if quant_config.use_imatrix:
|
| 138 |
-
|
| 139 |
-
quantize_cmd.extend(["--imatrix", quant_config.imatrix_file])
|
| 140 |
quantize_cmd.append(quant_config.fp16_model)
|
| 141 |
quantize_cmd.append(quant_config.quantized_gguf)
|
| 142 |
-
quantize_cmd.append(quant_config.
|
|
|
|
| 143 |
process = subprocess.Popen(quantize_cmd, shell=False, stderr=subprocess.STDOUT)
|
| 144 |
try:
|
| 145 |
process.wait(timeout=self.QUANTIZE_TIMEOUT)
|
|
@@ -149,21 +134,71 @@ class HuggingFaceModelProcessor:
|
|
| 149 |
process.wait(timeout=self.KILL_TIMEOUT)
|
| 150 |
except subprocess.TimeoutExpired:
|
| 151 |
process.kill()
|
| 152 |
-
raise GGUFConverterError("Error cuantizando:
|
| 153 |
if process.returncode != 0:
|
| 154 |
-
raise GGUFConverterError(f"Error cuantizando: {process.returncode}")
|
|
|
|
| 155 |
return quant_config.quantized_gguf
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
with gr.Blocks() as demo:
|
| 164 |
-
gr.Markdown("##
|
| 165 |
-
dataset_input = gr.Textbox(label="Nombre del dataset
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
demo.launch()
|
|
|
|
| 4 |
import tempfile
|
| 5 |
from pathlib import Path
|
| 6 |
from textwrap import dedent
|
|
|
|
| 7 |
from dataclasses import dataclass, field
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
from datasets import load_dataset
|
| 11 |
from huggingface_hub import HfApi, ModelCard, whoami
|
|
|
|
|
|
|
| 12 |
|
| 13 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 14 |
|
|
|
|
| 15 |
@dataclass
|
| 16 |
class QuantizationConfig:
|
| 17 |
method: str
|
|
|
|
| 31 |
class SplitConfig:
|
| 32 |
enabled: bool = False
|
| 33 |
max_tensors: int = 256
|
| 34 |
+
max_size: str = None
|
| 35 |
|
| 36 |
@dataclass
|
| 37 |
class OutputConfig:
|
|
|
|
| 51 |
new_repo_url: str = field(default="", init=False)
|
| 52 |
new_repo_id: str = field(default="", init=False)
|
| 53 |
|
|
|
|
| 54 |
class GGUFConverterError(Exception):
|
| 55 |
pass
|
| 56 |
|
|
|
|
| 57 |
class HuggingFaceModelProcessor:
|
| 58 |
+
QUANTIZE_TIMEOUT = 86400
|
| 59 |
+
HF_TO_GGUF_TIMEOUT = 3600
|
| 60 |
+
IMATRIX_TIMEOUT = 86400
|
| 61 |
+
SPLIT_TIMEOUT = 3600
|
| 62 |
+
KILL_TIMEOUT = 5
|
| 63 |
+
|
| 64 |
DOWNLOAD_FOLDER = "./downloads"
|
| 65 |
OUTPUT_FOLDER = "./outputs"
|
| 66 |
CALIBRATION_FILE = "calibration_data_v5_rc.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def __init__(self):
|
| 69 |
self.HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 70 |
self._create_folder(self.DOWNLOAD_FOLDER)
|
| 71 |
self._create_folder(self.OUTPUT_FOLDER)
|
| 72 |
|
| 73 |
+
def _create_folder(self, folder_name: str):
|
| 74 |
if not os.path.exists(folder_name):
|
| 75 |
os.makedirs(folder_name)
|
| 76 |
return folder_name
|
| 77 |
|
| 78 |
+
def _download_dataset(self, dataset_name: str):
|
| 79 |
+
print(f"Cargando dataset desde HuggingFace Hub: {dataset_name}")
|
| 80 |
+
dataset = load_dataset(dataset_name, use_auth_token=self.HF_TOKEN)
|
| 81 |
+
return dataset
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
def _download_model(self, processing_config: ModelProcessingConfig):
|
|
|
|
|
|
|
| 84 |
print(f"Descargando modelo {processing_config.model_name}")
|
| 85 |
if os.path.exists(processing_config.quant_config.fp16_model):
|
| 86 |
+
print("FP16 ya existe, omitiendo conversi贸n.")
|
| 87 |
return processing_config.quant_config.fp16_model
|
| 88 |
|
| 89 |
with tempfile.TemporaryDirectory(dir=self.DOWNLOAD_FOLDER) as tmpdir:
|
| 90 |
local_dir = f"{Path(tmpdir)}/{processing_config.model_name}"
|
| 91 |
api = HfApi(token=processing_config.token)
|
| 92 |
+
pattern = "*.safetensors"
|
| 93 |
+
api.snapshot_download(repo_id=processing_config.model_id, local_dir=local_dir, allow_patterns=[pattern])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
convert_command = [
|
| 95 |
"python3", "/app/convert_hf_to_gguf.py", local_dir,
|
| 96 |
"--outtype", "f16", "--outfile", processing_config.quant_config.fp16_model
|
|
|
|
| 104 |
process.wait(timeout=self.KILL_TIMEOUT)
|
| 105 |
except subprocess.TimeoutExpired:
|
| 106 |
process.kill()
|
| 107 |
+
raise GGUFConverterError("Error convirtiendo a FP16: timeout")
|
| 108 |
if process.returncode != 0:
|
| 109 |
+
raise GGUFConverterError(f"Error convirtiendo a FP16: code={process.returncode}")
|
| 110 |
+
print("Modelo convertido a FP16 correctamente")
|
| 111 |
return processing_config.quant_config.fp16_model
|
| 112 |
|
| 113 |
+
def _quantize_model(self, quant_config: QuantizationConfig):
|
|
|
|
| 114 |
quantize_cmd = ["llama-quantize"]
|
| 115 |
if quant_config.quant_embedding:
|
| 116 |
quantize_cmd.extend(["--token-embedding-type", quant_config.embedding_tensor_method])
|
|
|
|
| 120 |
if quant_config.quant_output:
|
| 121 |
quantize_cmd.extend(["--output-tensor-type", quant_config.output_tensor_method])
|
| 122 |
if quant_config.use_imatrix:
|
| 123 |
+
raise NotImplementedError("imatrix no implementado para esta demo autom谩tica")
|
|
|
|
| 124 |
quantize_cmd.append(quant_config.fp16_model)
|
| 125 |
quantize_cmd.append(quant_config.quantized_gguf)
|
| 126 |
+
quantize_cmd.append(quant_config.method)
|
| 127 |
+
|
| 128 |
process = subprocess.Popen(quantize_cmd, shell=False, stderr=subprocess.STDOUT)
|
| 129 |
try:
|
| 130 |
process.wait(timeout=self.QUANTIZE_TIMEOUT)
|
|
|
|
| 134 |
process.wait(timeout=self.KILL_TIMEOUT)
|
| 135 |
except subprocess.TimeoutExpired:
|
| 136 |
process.kill()
|
| 137 |
+
raise GGUFConverterError("Error cuantizando: timeout")
|
| 138 |
if process.returncode != 0:
|
| 139 |
+
raise GGUFConverterError(f"Error cuantizando: code={process.returncode}")
|
| 140 |
+
print("Cuantizaci贸n completada")
|
| 141 |
return quant_config.quantized_gguf
|
| 142 |
|
| 143 |
+
def _create_repo(self, processing_config: ModelProcessingConfig):
|
| 144 |
+
api = HfApi(token=processing_config.token)
|
| 145 |
+
new_repo_url = api.create_repo(repo_id=processing_config.output_config.repo_name, exist_ok=True, private=processing_config.output_config.private_repo)
|
| 146 |
+
processing_config.new_repo_url = new_repo_url.url
|
| 147 |
+
processing_config.new_repo_id = new_repo_url.repo_id
|
| 148 |
+
print("Repositorio creado:", processing_config.new_repo_url)
|
| 149 |
+
return new_repo_url
|
| 150 |
+
|
| 151 |
+
def run_full_pipeline(self, token, model_id, model_name, dataset_name):
|
| 152 |
+
logs = []
|
| 153 |
+
try:
|
| 154 |
+
# 1. Cargar dataset
|
| 155 |
+
dataset = self._download_dataset(dataset_name)
|
| 156 |
+
logs.append(f"Dataset cargado: {dataset_name}")
|
| 157 |
+
|
| 158 |
+
# 2. Configuraci贸n inicial
|
| 159 |
+
outdir = self.OUTPUT_FOLDER
|
| 160 |
+
quant_config = QuantizationConfig(method="Q4_0")
|
| 161 |
+
quant_config.fp16_model = f"{outdir}/{model_name}.f16"
|
| 162 |
+
quant_config.quantized_gguf = f"{outdir}/{model_name}.gguf"
|
| 163 |
+
split_config = SplitConfig()
|
| 164 |
+
output_config = OutputConfig(private_repo=False, repo_name=f"{model_name}-gguf")
|
| 165 |
+
processing_config = ModelProcessingConfig(
|
| 166 |
+
token=token, model_id=model_id, model_name=model_name, outdir=outdir,
|
| 167 |
+
quant_config=quant_config, split_config=split_config, output_config=output_config
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# 3. Descargar modelo
|
| 171 |
+
self._download_model(processing_config)
|
| 172 |
+
logs.append("Modelo descargado y convertido a FP16")
|
| 173 |
+
|
| 174 |
+
# 4. Cuantizar modelo
|
| 175 |
+
self._quantize_model(quant_config)
|
| 176 |
+
logs.append("Modelo cuantizado a GGUF")
|
| 177 |
+
|
| 178 |
+
# 5. Crear repo
|
| 179 |
+
self._create_repo(processing_config)
|
| 180 |
+
logs.append(f"Repositorio creado: {processing_config.new_repo_url}")
|
| 181 |
+
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logs.append(f"ERROR: {e}")
|
| 184 |
+
|
| 185 |
+
return "\n".join(logs)
|
| 186 |
+
|
| 187 |
+
# ----------------- Interfaz Gradio -----------------
|
| 188 |
+
processor = HuggingFaceModelProcessor()
|
| 189 |
|
| 190 |
with gr.Blocks() as demo:
|
| 191 |
+
gr.Markdown("## Pipeline Autom谩tica GGUF desde HuggingFace Hub")
|
| 192 |
+
dataset_input = gr.Textbox(label="Nombre del dataset HuggingFace", placeholder="openerotica/erotiquant3")
|
| 193 |
+
model_input = gr.Textbox(label="ID del modelo HF", placeholder="ochoa/your-model")
|
| 194 |
+
token_input = gr.Textbox(label="Tu token HF (opcional, si est谩 en HF_TOKEN puede dejarse vac铆o)", type="password")
|
| 195 |
+
run_button = gr.Button("Ejecutar pipeline autom谩tica")
|
| 196 |
+
output_logs = gr.Textbox(label="Logs", lines=20)
|
| 197 |
+
|
| 198 |
+
run_button.click(
|
| 199 |
+
fn=lambda token, model_id, model_name, dataset_name: processor.run_full_pipeline(token, model_id, model_name, dataset_name),
|
| 200 |
+
inputs=[token_input, model_input, model_input, dataset_input],
|
| 201 |
+
outputs=[output_logs]
|
| 202 |
+
)
|
| 203 |
|
| 204 |
demo.launch()
|