Spaces:
Sleeping
Sleeping
File size: 15,546 Bytes
cc4ea58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
"""
Pronunciation Analysis Module - Speech clarity and pronunciation feedback.
Provides:
- Pronunciation scoring (PCC - Percent Consonants Correct)
- Clarity assessment
- Pace analysis
- Per-word feedback
- Improvement suggestions
"""
import io
import logging
from typing import Optional, List
from dataclasses import dataclass, field
from enum import Enum
from api.config import settings
if settings.ENVIRONMENT == "development":
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.WARNING)
class ErrorType(str, Enum):
"""Types of pronunciation errors."""
SUBSTITUTION = "substitution" # Wrong sound
OMISSION = "omission" # Missing sound
ADDITION = "addition" # Extra sound
DISTORTION = "distortion" # Unclear sound
@dataclass
class PhonemeError:
"""Individual phoneme-level error."""
word: str
position: int # Position in word
expected: str
actual: Optional[str]
error_type: ErrorType
suggestion: str
@dataclass
class WordScore:
"""Per-word pronunciation score."""
word: str
score: float # 0-100
start_time: Optional[float] = None
end_time: Optional[float] = None
errors: List[PhonemeError] = field(default_factory=list)
@dataclass
class AIFeedback:
"""AI-generated personalized feedback."""
feedback: str
encouragement: str
specific_tips: List[str]
recommended_exercises: List[str]
difficulty_adjustment: Optional[str] = None # "easier", "same", "harder"
@dataclass
class PronunciationFeedback:
"""Complete pronunciation analysis result."""
overall_score: float # 0-100
clarity_score: float # 0-100
pace_score: float # 0-100
fluency_score: float # 0-100
word_scores: List[WordScore]
suggestions: List[str]
phoneme_errors: List[PhonemeError]
transcription: str
target_text: str
duration_seconds: Optional[float] = None
ai_feedback: Optional[AIFeedback] = None # GPT-4o powered feedback
class PronunciationAnalyzer:
"""
Analyze pronunciation against target text.
Uses ASR with forced alignment to compare user speech
against expected pronunciation. Integrates GPT-4o for
personalized feedback via GitHub Models API.
"""
def __init__(self):
self._asr = None
self._ai_feedback = None
def _get_ai_feedback_generator(self):
"""Get AI feedback generator instance."""
if self._ai_feedback is None:
from api.endpoints.v1.processing.ai_feedback import get_ai_feedback_generator
self._ai_feedback = get_ai_feedback_generator()
return self._ai_feedback
def _get_asr(self):
"""Get ASR instance for transcription."""
if self._asr is None:
from api.endpoints.v1.processing.therapy_asr import get_therapy_asr
self._asr = get_therapy_asr()
return self._asr
async def analyze(
self,
audio_bytes: bytes,
target_text: str,
user_baseline: Optional[dict] = None,
user_context: Optional[dict] = None,
include_ai_feedback: bool = True
) -> PronunciationFeedback:
"""
Analyze pronunciation of audio against target text.
Args:
audio_bytes: User's recorded audio
target_text: Expected text/phrase
user_baseline: Optional baseline metrics for comparison
user_context: Optional user profile (speech condition, severity)
include_ai_feedback: Whether to generate GPT-4o feedback
Returns:
PronunciationFeedback with scores, suggestions, and AI feedback
"""
logging.info(f"Analyzing pronunciation for target: {target_text}")
# 1. Transcribe the audio
asr = self._get_asr()
result = asr.transcribe(audio_bytes)
transcription = result.text.strip().lower()
target_clean = target_text.strip().lower()
logging.debug(f"Transcription: {transcription}")
logging.debug(f"Target: {target_clean}")
# 2. Compare transcription to target
word_scores, phoneme_errors = self._compare_texts(
transcription, target_clean
)
# 3. Calculate scores
overall_score = self._calculate_overall_score(word_scores)
clarity_score = self._calculate_clarity_score(word_scores, phoneme_errors)
pace_score = self._calculate_pace_score(result.word_timestamps)
fluency_score = self._calculate_fluency_score(transcription, target_clean)
# 4. Generate rule-based suggestions
suggestions = self._generate_suggestions(phoneme_errors, word_scores)
# 5. Generate AI-powered feedback (GPT-4o via GitHub Models)
ai_feedback = None
if include_ai_feedback:
try:
ai_generator = self._get_ai_feedback_generator()
# Convert phoneme errors to dict format for AI
errors_dict = [
{
"word": e.word,
"expected": e.expected,
"actual": e.actual,
"error_type": e.error_type.value
}
for e in phoneme_errors
]
ai_result = await ai_generator.generate_feedback(
target_text=target_text,
transcription=transcription,
overall_score=overall_score,
clarity_score=clarity_score,
pace_score=pace_score,
fluency_score=fluency_score,
errors=errors_dict,
user_context=user_context
)
ai_feedback = AIFeedback(
feedback=ai_result.feedback,
encouragement=ai_result.encouragement,
specific_tips=ai_result.specific_tips,
recommended_exercises=ai_result.recommended_exercises,
difficulty_adjustment=ai_result.difficulty_adjustment
)
logging.info("AI feedback generated successfully")
except Exception as e:
logging.warning(f"AI feedback generation failed: {e}")
ai_feedback = None
return PronunciationFeedback(
overall_score=overall_score,
clarity_score=clarity_score,
pace_score=pace_score,
fluency_score=fluency_score,
word_scores=word_scores,
suggestions=suggestions,
phoneme_errors=phoneme_errors,
transcription=transcription,
target_text=target_text,
ai_feedback=ai_feedback
)
def _compare_texts(
self,
transcription: str,
target: str
) -> tuple[List[WordScore], List[PhonemeError]]:
"""Compare transcribed text to target text."""
trans_words = transcription.split()
target_words = target.split()
word_scores = []
phoneme_errors = []
# Simple word-level comparison (can be enhanced with phoneme alignment)
max_len = max(len(trans_words), len(target_words))
for i in range(max_len):
target_word = target_words[i] if i < len(target_words) else ""
trans_word = trans_words[i] if i < len(trans_words) else ""
if not target_word:
# Extra word in transcription
phoneme_errors.append(PhonemeError(
word=trans_word,
position=i,
expected="",
actual=trans_word,
error_type=ErrorType.ADDITION,
suggestion=f"Extra word '{trans_word}' detected"
))
continue
if not trans_word:
# Missing word
word_scores.append(WordScore(
word=target_word,
score=0.0,
errors=[PhonemeError(
word=target_word,
position=i,
expected=target_word,
actual=None,
error_type=ErrorType.OMISSION,
suggestion=f"Try to include the word '{target_word}'"
)]
))
phoneme_errors.append(word_scores[-1].errors[0])
continue
# Compare words
score, errors = self._compare_words(target_word, trans_word, i)
word_scores.append(WordScore(
word=target_word,
score=score,
errors=errors
))
phoneme_errors.extend(errors)
return word_scores, phoneme_errors
def _compare_words(
self,
target_word: str,
trans_word: str,
position: int
) -> tuple[float, List[PhonemeError]]:
"""Compare two words and return score and errors."""
errors = []
# Exact match
if target_word == trans_word:
return 100.0, []
# Calculate similarity (simple Levenshtein-based)
similarity = self._word_similarity(target_word, trans_word)
score = similarity * 100
# Detect error type
if len(trans_word) > len(target_word):
error_type = ErrorType.ADDITION
suggestion = f"'{trans_word}' has extra sounds, expected '{target_word}'"
elif len(trans_word) < len(target_word):
error_type = ErrorType.OMISSION
suggestion = f"Some sounds missing in '{trans_word}', expected '{target_word}'"
else:
error_type = ErrorType.SUBSTITUTION
suggestion = f"'{trans_word}' should be '{target_word}'"
if score < 100:
errors.append(PhonemeError(
word=target_word,
position=position,
expected=target_word,
actual=trans_word,
error_type=error_type,
suggestion=suggestion
))
return score, errors
def _word_similarity(self, word1: str, word2: str) -> float:
"""Calculate similarity between two words (0-1)."""
if word1 == word2:
return 1.0
# Levenshtein distance normalized
len1, len2 = len(word1), len(word2)
if len1 == 0 or len2 == 0:
return 0.0
# Create distance matrix
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
dp[i][0] = i
for j in range(len2 + 1):
dp[0][j] = j
for i in range(1, len1 + 1):
for j in range(1, len2 + 1):
cost = 0 if word1[i-1] == word2[j-1] else 1
dp[i][j] = min(
dp[i-1][j] + 1, # deletion
dp[i][j-1] + 1, # insertion
dp[i-1][j-1] + cost # substitution
)
distance = dp[len1][len2]
max_len = max(len1, len2)
return 1.0 - (distance / max_len)
def _calculate_overall_score(self, word_scores: List[WordScore]) -> float:
"""Calculate overall pronunciation score."""
if not word_scores:
return 0.0
return sum(ws.score for ws in word_scores) / len(word_scores)
def _calculate_clarity_score(
self,
word_scores: List[WordScore],
errors: List[PhonemeError]
) -> float:
"""Calculate speech clarity score."""
if not word_scores:
return 0.0
# Penalize based on error types
error_penalties = {
ErrorType.DISTORTION: 15,
ErrorType.SUBSTITUTION: 10,
ErrorType.OMISSION: 20,
ErrorType.ADDITION: 5,
}
base_score = 100.0
for error in errors:
base_score -= error_penalties.get(error.error_type, 10)
return max(0.0, base_score)
def _calculate_pace_score(
self,
word_timestamps: Optional[List[dict]]
) -> float:
"""Calculate pace/timing score."""
if not word_timestamps or len(word_timestamps) < 2:
return 75.0 # Default score if no timestamps
# Calculate words per minute
total_duration = word_timestamps[-1].get("end", 0) - word_timestamps[0].get("start", 0)
if total_duration <= 0:
return 75.0
wpm = (len(word_timestamps) / total_duration) * 60
# Ideal range: 100-150 WPM for clear speech
if 100 <= wpm <= 150:
return 100.0
elif 80 <= wpm < 100 or 150 < wpm <= 180:
return 85.0
elif 60 <= wpm < 80 or 180 < wpm <= 200:
return 70.0
else:
return 50.0
def _calculate_fluency_score(self, transcription: str, target: str) -> float:
"""Calculate fluency based on text similarity."""
return self._word_similarity(transcription, target) * 100
def _generate_suggestions(
self,
errors: List[PhonemeError],
word_scores: List[WordScore]
) -> List[str]:
"""Generate actionable improvement suggestions."""
suggestions = []
# Group errors by type
error_types = {}
for error in errors:
error_types.setdefault(error.error_type, []).append(error)
# Generate suggestions based on error patterns
if ErrorType.OMISSION in error_types:
omissions = error_types[ErrorType.OMISSION]
words = [e.word for e in omissions[:3]]
suggestions.append(
f"Try to pronounce all sounds in: {', '.join(words)}"
)
if ErrorType.SUBSTITUTION in error_types:
subs = error_types[ErrorType.SUBSTITUTION]
if subs:
suggestions.append(
f"Focus on the correct sound in '{subs[0].word}'"
)
if ErrorType.ADDITION in error_types:
suggestions.append("Speak more clearly without adding extra sounds")
# Low scoring words
low_scores = [ws for ws in word_scores if ws.score < 70]
if low_scores:
words = [ws.word for ws in low_scores[:3]]
suggestions.append(
f"Practice these words: {', '.join(words)}"
)
# General encouragement if few errors
if len(errors) <= 2:
suggestions.append("Good job! Keep practicing for even better clarity.")
return suggestions[:5] # Limit to 5 suggestions
# Singleton instance
_analyzer_instance: Optional[PronunciationAnalyzer] = None
def get_pronunciation_analyzer() -> PronunciationAnalyzer:
"""Get or create PronunciationAnalyzer singleton."""
global _analyzer_instance
if _analyzer_instance is None:
_analyzer_instance = PronunciationAnalyzer()
return _analyzer_instance
async def analyze_pronunciation(
audio_bytes: bytes,
target_text: str,
user_baseline: Optional[dict] = None,
user_context: Optional[dict] = None,
include_ai_feedback: bool = True
) -> PronunciationFeedback:
"""Convenience function for pronunciation analysis with AI feedback."""
analyzer = get_pronunciation_analyzer()
return await analyzer.analyze(
audio_bytes,
target_text,
user_baseline,
user_context,
include_ai_feedback
)
|