File size: 10,321 Bytes
cc4ea58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
Therapy ASR Module - Multi-engine speech recognition for therapy applications.

Supports:
- Local Whisper (general speech, privacy-focused)
- SpeechBrain (fine-tuned for atypical speech)
- OpenAI Whisper API (fallback)
"""

import io
import logging
from enum import Enum
from typing import Optional
from dataclasses import dataclass

from api.config import settings

if settings.ENVIRONMENT == "development":
    logging.basicConfig(level=logging.DEBUG)
else:
    logging.basicConfig(level=logging.WARNING)


class ASREngine(str, Enum):
    """Available ASR engines."""
    WHISPER_LOCAL = "whisper_local"
    SPEECHBRAIN = "speechbrain"
    WHISPER_API = "whisper_api"
    AUTO = "auto"  # Automatically select based on user profile


@dataclass
class TranscriptionResult:
    """Structured transcription result."""
    text: str
    engine_used: ASREngine
    confidence: Optional[float] = None
    word_timestamps: Optional[list] = None
    language: Optional[str] = None


class TherapyASR:
    """
    Multi-engine ASR for therapy applications.

    Supports automatic engine selection based on user speech profile,
    with fallback chain for reliability.
    """

    def __init__(self, default_engine: ASREngine = ASREngine.AUTO):
        self.default_engine = default_engine
        self._whisper_local_model = None
        self._speechbrain_model = None
        self._openai_client = None

    def _get_openai_client(self):
        """Lazy load OpenAI client."""
        if self._openai_client is None:
            from openai import OpenAI
            self._openai_client = OpenAI(api_key=settings.OPENAI_API_KEY)
        return self._openai_client

    def _get_whisper_local(self):
        """Lazy load local Whisper model."""
        if self._whisper_local_model is None:
            try:
                import torch
                from transformers import WhisperProcessor, WhisperForConditionalGeneration

                model_name = "openai/whisper-base"  # Start with base, upgrade as needed
                logging.info(f"Loading local Whisper model: {model_name}")

                self._whisper_processor = WhisperProcessor.from_pretrained(model_name)
                self._whisper_local_model = WhisperForConditionalGeneration.from_pretrained(model_name)

                # Use GPU if available
                if torch.cuda.is_available():
                    self._whisper_local_model = self._whisper_local_model.to("cuda")
                elif torch.backends.mps.is_available():
                    self._whisper_local_model = self._whisper_local_model.to("mps")

                logging.info("Local Whisper model loaded successfully")
            except ImportError as e:
                logging.warning(f"Local Whisper not available: {e}")
                raise
        return self._whisper_local_model

    def _get_speechbrain(self):
        """Lazy load SpeechBrain model for atypical speech."""
        if self._speechbrain_model is None:
            try:
                import speechbrain as sb

                # Use pre-trained model, can be swapped for fine-tuned version
                model_source = "speechbrain/asr-wav2vec2-commonvoice-en"
                logging.info(f"Loading SpeechBrain model: {model_source}")

                self._speechbrain_model = sb.pretrained.EncoderASR.from_hparams(
                    source=model_source,
                    savedir="models/speechbrain_asr"
                )
                logging.info("SpeechBrain model loaded successfully")
            except ImportError as e:
                logging.warning(f"SpeechBrain not available: {e}")
                raise
        return self._speechbrain_model

    def _select_engine(self, user_profile: Optional[dict] = None) -> ASREngine:
        """Select appropriate ASR engine based on user profile."""
        if self.default_engine != ASREngine.AUTO:
            return self.default_engine

        if user_profile:
            # Use SpeechBrain for users with speech conditions
            speech_condition = user_profile.get("speech_condition")
            if speech_condition in ["dysarthria", "apraxia", "autism", "stuttering"]:
                return ASREngine.SPEECHBRAIN

            # Use local Whisper for privacy-focused users
            if user_profile.get("privacy_mode") == "local":
                return ASREngine.WHISPER_LOCAL

        # Default to API for best accuracy
        return ASREngine.WHISPER_API

    def transcribe(
        self,
        audio_data: bytes,
        filename: str = "audio.wav",
        content_type: str = "audio/wav",
        user_profile: Optional[dict] = None,
        engine: Optional[ASREngine] = None
    ) -> TranscriptionResult:
        """
        Transcribe audio using the most appropriate engine.

        Args:
            audio_data: Raw audio bytes
            filename: Original filename
            content_type: MIME type of audio
            user_profile: Optional user profile for engine selection
            engine: Force specific engine (overrides auto-selection)

        Returns:
            TranscriptionResult with text and metadata
        """
        selected_engine = engine or self._select_engine(user_profile)
        logging.info(f"Transcribing with engine: {selected_engine.value}")

        # Try selected engine with fallback chain
        fallback_order = [selected_engine]
        if selected_engine != ASREngine.WHISPER_API:
            fallback_order.append(ASREngine.WHISPER_API)

        last_error = None
        for eng in fallback_order:
            try:
                if eng == ASREngine.WHISPER_API:
                    return self._transcribe_whisper_api(audio_data, filename, content_type)
                elif eng == ASREngine.WHISPER_LOCAL:
                    return self._transcribe_whisper_local(audio_data)
                elif eng == ASREngine.SPEECHBRAIN:
                    return self._transcribe_speechbrain(audio_data)
            except Exception as e:
                logging.warning(f"Engine {eng.value} failed: {e}")
                last_error = e
                continue

        raise RuntimeError(f"All ASR engines failed. Last error: {last_error}")

    def _transcribe_whisper_api(
        self,
        audio_data: bytes,
        filename: str,
        content_type: str
    ) -> TranscriptionResult:
        """Transcribe using OpenAI Whisper API."""
        logging.info("Transcribing with OpenAI Whisper API")

        client = self._get_openai_client()
        file_data = (filename, audio_data, content_type)

        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=file_data,
            response_format="verbose_json",
            timestamp_granularities=["word"]
        )

        # Extract word timestamps if available
        word_timestamps = None
        if hasattr(transcription, 'words'):
            word_timestamps = [
                {"word": w.word, "start": w.start, "end": w.end}
                for w in transcription.words
            ]

        return TranscriptionResult(
            text=transcription.text,
            engine_used=ASREngine.WHISPER_API,
            language=getattr(transcription, 'language', None),
            word_timestamps=word_timestamps
        )

    def _transcribe_whisper_local(self, audio_data: bytes) -> TranscriptionResult:
        """Transcribe using local Whisper model."""
        logging.info("Transcribing with local Whisper")

        import torch
        import librosa
        import numpy as np

        model = self._get_whisper_local()

        # Load audio from bytes
        audio_array, sr = librosa.load(io.BytesIO(audio_data), sr=16000)

        # Process audio
        input_features = self._whisper_processor(
            audio_array,
            sampling_rate=16000,
            return_tensors="pt"
        ).input_features

        # Move to same device as model
        device = next(model.parameters()).device
        input_features = input_features.to(device)

        # Generate transcription
        with torch.no_grad():
            predicted_ids = model.generate(input_features)

        transcription = self._whisper_processor.batch_decode(
            predicted_ids,
            skip_special_tokens=True
        )[0]

        return TranscriptionResult(
            text=transcription.strip(),
            engine_used=ASREngine.WHISPER_LOCAL
        )

    def _transcribe_speechbrain(self, audio_data: bytes) -> TranscriptionResult:
        """Transcribe using SpeechBrain (optimized for atypical speech)."""
        logging.info("Transcribing with SpeechBrain")

        import tempfile
        import os

        model = self._get_speechbrain()

        # SpeechBrain requires file path, write temp file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
            f.write(audio_data)
            temp_path = f.name

        try:
            transcription = model.transcribe_file(temp_path)

            # Handle different return types
            if isinstance(transcription, list):
                text = transcription[0] if transcription else ""
            else:
                text = str(transcription)

            return TranscriptionResult(
                text=text.strip(),
                engine_used=ASREngine.SPEECHBRAIN
            )
        finally:
            os.unlink(temp_path)


# Singleton instance for reuse
_therapy_asr_instance: Optional[TherapyASR] = None


def get_therapy_asr() -> TherapyASR:
    """Get or create TherapyASR singleton."""
    global _therapy_asr_instance
    if _therapy_asr_instance is None:
        _therapy_asr_instance = TherapyASR()
    return _therapy_asr_instance


def transcribe_for_therapy(
    audio_data: bytes,
    filename: str = "audio.wav",
    content_type: str = "audio/wav",
    user_profile: Optional[dict] = None,
    engine: Optional[ASREngine] = None
) -> TranscriptionResult:
    """
    Convenience function to transcribe audio for therapy.

    This is the main entry point for therapy transcription.
    """
    asr = get_therapy_asr()
    return asr.transcribe(
        audio_data=audio_data,
        filename=filename,
        content_type=content_type,
        user_profile=user_profile,
        engine=engine
    )