Spaces:
Sleeping
Sleeping
File size: 10,602 Bytes
cc4ea58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
"""
Therapy TTS Module - Text-to-speech for therapy and AAC applications.
Supports:
- WhisperSpeech (fast, voice cloning)
- OpenAI TTS API (fallback)
- Edge TTS (lightweight fallback)
"""
import io
import logging
from enum import Enum
from typing import Optional
from dataclasses import dataclass
from api.config import settings
if settings.ENVIRONMENT == "development":
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.WARNING)
class TTSEngine(str, Enum):
"""Available TTS engines."""
WHISPERSPEECH = "whisperspeech"
OPENAI_TTS = "openai_tts"
EDGE_TTS = "edge_tts"
AUTO = "auto"
class TTSVoice(str, Enum):
"""Preset voice options."""
NEUTRAL = "neutral"
WARM = "warm"
CLEAR = "clear"
SLOW = "slow" # For therapy exercises
CUSTOM = "custom" # Voice cloning
@dataclass
class TTSResult:
"""TTS synthesis result."""
audio_bytes: bytes
format: str # wav, mp3
sample_rate: int
engine_used: TTSEngine
duration_seconds: Optional[float] = None
class TherapyTTS:
"""
TTS engine for therapy applications.
Features:
- Voice cloning from reference audio
- Adjustable speed for therapy exercises
- Multiple engine support with fallback
"""
def __init__(self, default_engine: TTSEngine = TTSEngine.AUTO):
self.default_engine = default_engine
self._whisperspeech_pipe = None
self._openai_client = None
def _get_openai_client(self):
"""Lazy load OpenAI client."""
if self._openai_client is None:
from openai import OpenAI
self._openai_client = OpenAI(api_key=settings.OPENAI_API_KEY)
return self._openai_client
def _get_whisperspeech(self):
"""Lazy load WhisperSpeech pipeline."""
if self._whisperspeech_pipe is None:
try:
from whisperspeech.pipeline import Pipeline
logging.info("Loading WhisperSpeech pipeline...")
self._whisperspeech_pipe = Pipeline(
s2a_ref='collabora/whisperspeech:s2a-q4-tiny-en+pl.model'
)
logging.info("WhisperSpeech loaded successfully")
except ImportError as e:
logging.warning(f"WhisperSpeech not available: {e}")
raise
return self._whisperspeech_pipe
def _select_engine(self, voice_reference: Optional[bytes] = None) -> TTSEngine:
"""Select TTS engine based on requirements."""
if self.default_engine != TTSEngine.AUTO:
return self.default_engine
# Use WhisperSpeech for voice cloning
if voice_reference:
return TTSEngine.WHISPERSPEECH
# Default to OpenAI for quality
return TTSEngine.OPENAI_TTS
def synthesize(
self,
text: str,
voice: TTSVoice = TTSVoice.NEUTRAL,
speed: float = 1.0,
voice_reference: Optional[bytes] = None,
engine: Optional[TTSEngine] = None,
output_format: str = "wav"
) -> TTSResult:
"""
Synthesize speech from text.
Args:
text: Text to synthesize
voice: Voice preset to use
speed: Speech rate (0.5 = slow, 1.0 = normal, 2.0 = fast)
voice_reference: Audio bytes for voice cloning
engine: Force specific engine
output_format: Output format (wav, mp3)
Returns:
TTSResult with audio bytes
"""
selected_engine = engine or self._select_engine(voice_reference)
logging.info(f"Synthesizing with engine: {selected_engine.value}")
# Fallback chain
fallback_order = [selected_engine]
if selected_engine != TTSEngine.OPENAI_TTS:
fallback_order.append(TTSEngine.OPENAI_TTS)
last_error = None
for eng in fallback_order:
try:
if eng == TTSEngine.OPENAI_TTS:
return self._synthesize_openai(text, voice, speed, output_format)
elif eng == TTSEngine.WHISPERSPEECH:
return self._synthesize_whisperspeech(
text, voice_reference, speed, output_format
)
elif eng == TTSEngine.EDGE_TTS:
return self._synthesize_edge_tts(text, voice, speed, output_format)
except Exception as e:
logging.warning(f"Engine {eng.value} failed: {e}")
last_error = e
continue
raise RuntimeError(f"All TTS engines failed. Last error: {last_error}")
def _synthesize_openai(
self,
text: str,
voice: TTSVoice,
speed: float,
output_format: str
) -> TTSResult:
"""Synthesize using OpenAI TTS API."""
logging.info("Synthesizing with OpenAI TTS")
client = self._get_openai_client()
# Map voice presets to OpenAI voices
voice_map = {
TTSVoice.NEUTRAL: "alloy",
TTSVoice.WARM: "nova",
TTSVoice.CLEAR: "onyx",
TTSVoice.SLOW: "alloy", # Use speed parameter
TTSVoice.CUSTOM: "alloy",
}
response = client.audio.speech.create(
model="tts-1",
voice=voice_map.get(voice, "alloy"),
input=text,
speed=speed,
response_format="wav" if output_format == "wav" else "mp3"
)
audio_bytes = response.content
return TTSResult(
audio_bytes=audio_bytes,
format=output_format,
sample_rate=24000,
engine_used=TTSEngine.OPENAI_TTS
)
def _synthesize_whisperspeech(
self,
text: str,
voice_reference: Optional[bytes],
speed: float,
output_format: str
) -> TTSResult:
"""Synthesize using WhisperSpeech with optional voice cloning."""
logging.info("Synthesizing with WhisperSpeech")
import torch
import numpy as np
pipe = self._get_whisperspeech()
# Generate audio
if voice_reference:
# Voice cloning mode
import tempfile
import os
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
f.write(voice_reference)
ref_path = f.name
try:
audio = pipe.generate(text, speaker=ref_path)
finally:
os.unlink(ref_path)
else:
audio = pipe.generate(text)
# Convert to bytes
if isinstance(audio, torch.Tensor):
audio_np = audio.cpu().numpy()
else:
audio_np = np.array(audio)
# Ensure correct shape
if audio_np.ndim > 1:
audio_np = audio_np.squeeze()
# Apply speed adjustment if needed
if speed != 1.0:
import librosa
audio_np = librosa.effects.time_stretch(audio_np, rate=speed)
# Convert to wav bytes
import soundfile as sf
buffer = io.BytesIO()
sf.write(buffer, audio_np, 24000, format='WAV')
buffer.seek(0)
return TTSResult(
audio_bytes=buffer.read(),
format="wav",
sample_rate=24000,
engine_used=TTSEngine.WHISPERSPEECH,
duration_seconds=len(audio_np) / 24000
)
def _synthesize_edge_tts(
self,
text: str,
voice: TTSVoice,
speed: float,
output_format: str
) -> TTSResult:
"""Synthesize using Edge TTS (lightweight fallback)."""
logging.info("Synthesizing with Edge TTS")
import asyncio
import edge_tts
# Map voice presets to Edge TTS voices
voice_map = {
TTSVoice.NEUTRAL: "en-US-JennyNeural",
TTSVoice.WARM: "en-US-AriaNeural",
TTSVoice.CLEAR: "en-US-GuyNeural",
TTSVoice.SLOW: "en-US-JennyNeural",
TTSVoice.CUSTOM: "en-US-JennyNeural",
}
async def _generate():
communicate = edge_tts.Communicate(
text,
voice_map.get(voice, "en-US-JennyNeural"),
rate=f"{int((speed - 1) * 100):+d}%"
)
buffer = io.BytesIO()
async for chunk in communicate.stream():
if chunk["type"] == "audio":
buffer.write(chunk["data"])
return buffer.getvalue()
audio_bytes = asyncio.run(_generate())
return TTSResult(
audio_bytes=audio_bytes,
format="mp3",
sample_rate=24000,
engine_used=TTSEngine.EDGE_TTS
)
def generate_therapy_prompt(
self,
exercise_type: str,
target_text: str,
**kwargs
) -> TTSResult:
"""
Generate therapy exercise audio prompt.
Args:
exercise_type: Type of exercise (repeat_after_me, pronunciation, etc.)
target_text: The text to practice
**kwargs: Additional synthesis parameters
Returns:
TTSResult with exercise audio
"""
prompts = {
"repeat_after_me": f"Please repeat after me: {target_text}",
"pronunciation": f"Let's practice saying: {target_text}. Listen carefully.",
"slower": f"Now try saying it more slowly: {target_text}",
"word_by_word": f"Let's break it down. {target_text}",
"encouragement": f"Great try! Let's practice {target_text} again.",
}
prompt_text = prompts.get(exercise_type, target_text)
# Use slower speed for therapy prompts
speed = kwargs.pop("speed", 0.9)
return self.synthesize(
text=prompt_text,
speed=speed,
voice=TTSVoice.CLEAR,
**kwargs
)
# Singleton instance
_therapy_tts_instance: Optional[TherapyTTS] = None
def get_therapy_tts() -> TherapyTTS:
"""Get or create TherapyTTS singleton."""
global _therapy_tts_instance
if _therapy_tts_instance is None:
_therapy_tts_instance = TherapyTTS()
return _therapy_tts_instance
def synthesize_speech(
text: str,
voice: TTSVoice = TTSVoice.NEUTRAL,
speed: float = 1.0,
voice_reference: Optional[bytes] = None
) -> TTSResult:
"""Convenience function for TTS synthesis."""
tts = get_therapy_tts()
return tts.synthesize(
text=text,
voice=voice,
speed=speed,
voice_reference=voice_reference
)
|