OpenLab-NLP commited on
Commit
a8ba472
·
verified ·
1 Parent(s): 1a0a3d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -28
app.py CHANGED
@@ -22,13 +22,13 @@ TOKENIZER_PATH = "bpe.model"
22
 
23
  if not os.path.exists(MODEL_PATH):
24
  download_file(
25
- "https://huggingface.co/OpenLab-NLP/openlem1/resolve/main/encoder.weights.h5?download=true",
26
  MODEL_PATH
27
  )
28
 
29
  if not os.path.exists(TOKENIZER_PATH):
30
  download_file(
31
- "https://huggingface.co/OpenLab-NLP/openlem1/resolve/main/bpe.model?download=true",
32
  TOKENIZER_PATH
33
  )
34
 
@@ -50,45 +50,72 @@ def encode_sentence(sentence, max_len=MAX_LEN):
50
  def pad_sentence(tokens):
51
  return tokens + [pad_id]*(MAX_LEN - len(tokens))
52
 
53
- class EncoderBlock(layers.Layer):
54
- def __init__(self, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM):
55
- super().__init__() # ✅ 반드시 맨 위에 추가
56
- self.mha = layers.MultiHeadAttention(num_heads=8, key_dim=embed_dim//8)
57
- self.WB = layers.Dense(1152)
58
- self.W = layers.Dense(embed_dim)
59
- self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
60
- self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
61
- self.ln3 = tf.keras.layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
62
- def call(self, x):
63
- x = self.ln1(x)
64
- attn = self.mha(x, x, x)
65
- x = self.ln2(attn) + x
66
- re = x
67
- w = self.WB(x)
68
- a, b = tf.split(w, 2, axis=-1)
69
- g = tf.nn.silu(a) * b
70
- o = self.W(g)
71
- return self.ln3(o) + re
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  class L2NormLayer(layers.Layer):
74
  def __init__(self, axis=1, epsilon=1e-10, **kwargs):
75
  super().__init__(**kwargs)
76
  self.axis = axis
77
  self.epsilon = epsilon
78
-
79
  def call(self, inputs):
80
  return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
81
-
82
  def get_config(self):
83
  return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()}
84
 
85
  class SentenceEncoder(tf.keras.Model):
86
- def __init__(self, vocab_size, embed_dim=384, latent_dim=384, max_len=128, pad_id=3):
87
  super().__init__()
88
  self.pad_id = pad_id
89
  self.embed = layers.Embedding(vocab_size, embed_dim)
90
  self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
91
- self.blocks = [EncoderBlock(embed_dim=embed_dim, latent_dim=latent_dim) for _ in range(2)]
92
  self.attn_pool = layers.Dense(1)
93
  self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
94
  self.latent = layers.Dense(latent_dim, activation=None) # tanh 제거
@@ -98,10 +125,9 @@ class SentenceEncoder(tf.keras.Model):
98
  positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
99
  x_embed = self.embed(x) + self.pos_embed(positions)
100
  mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
101
-
102
  x = x_embed
103
  for block in self.blocks:
104
- x = block(x)
105
  x = self.ln_f(x)
106
 
107
  scores = self.attn_pool(x)
@@ -110,7 +136,8 @@ class SentenceEncoder(tf.keras.Model):
110
  pooled = tf.reduce_sum(x * scores, axis=1)
111
 
112
  latent = self.latent(pooled)
113
- return self.l2norm(latent) # L2 정규��
 
114
  # 3️⃣ 모델 로드
115
  # ===============================
116
  encoder = SentenceEncoder(vocab_size=vocab_size)
 
22
 
23
  if not os.path.exists(MODEL_PATH):
24
  download_file(
25
+ "https://huggingface.co/OpenLab-NLP/openlem-prototype/resolve/main/encoder_simcse.weights.h5?download=true",
26
  MODEL_PATH
27
  )
28
 
29
  if not os.path.exists(TOKENIZER_PATH):
30
  download_file(
31
+ "https://huggingface.co/OpenLab-NLP/openlem-prototype/resolve/main/bpe.model?download=true",
32
  TOKENIZER_PATH
33
  )
34
 
 
50
  def pad_sentence(tokens):
51
  return tokens + [pad_id]*(MAX_LEN - len(tokens))
52
 
53
+ class EncoderBlock(tf.keras.layers.Layer):
54
+ def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN):
55
+ super().__init__()
56
+ self.embed_dim = embed_dim
57
+ self.seq_len = seq_len
58
+
59
+ self.fc1 = layers.Dense(ff_dim)
60
+ self.fc2 = layers.Dense(embed_dim)
61
+ self.fc3 = layers.Dense(ff_dim//2)
62
+ self.fc4 = layers.Dense(embed_dim)
63
+
64
+ self.attn = layers.Dense(1)
65
+ self.token_mixer = layers.Dense(seq_len)
66
+ self.token_gate = layers.Dense(seq_len, activation='sigmoid')
67
+
68
+ self.ln = layers.LayerNormalization(epsilon=1e-5)
69
+ self.ln1 = layers.LayerNormalization(epsilon=1e-5)
70
+ self.ln2 = layers.LayerNormalization(epsilon=1e-5)
71
+ self.ln3 = layers.LayerNormalization(epsilon=1e-5)
72
+ self.ln4 = layers.LayerNormalization(epsilon=1e-5)
73
+
74
+ def call(self, x, mask):
75
+ mask = mask
76
+ # x: (B, L, D)
77
+ x_norm = self.ln(x)
78
+
79
+ h = self.fc1(x_norm)
80
+ g, v = tf.split(h, 2, axis=-1)
81
+ h = tf.nn.silu(g) * v
82
+ h = self.fc2(h)
83
+
84
+ h = x + self.ln1(h)
85
+
86
+ scores = self.attn(h)
87
+ scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores)
88
+ scores = tf.nn.softmax(scores, axis=1)
89
+ attn = h + self.ln2(h * scores)
90
+
91
+ v = tf.transpose(attn, [0, 2, 1])
92
+ v = self.token_mixer(v) * self.token_gate(v)
93
+ v = tf.transpose(v, [0, 2, 1])
94
+
95
+ x_norm = attn + self.ln3(v)
96
+ x = self.fc3(x_norm)
97
+ x = tf.nn.silu(x)
98
+ x = self.fc4(x)
99
+
100
+ return x_norm + self.ln4(x)
101
 
102
  class L2NormLayer(layers.Layer):
103
  def __init__(self, axis=1, epsilon=1e-10, **kwargs):
104
  super().__init__(**kwargs)
105
  self.axis = axis
106
  self.epsilon = epsilon
 
107
  def call(self, inputs):
108
  return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
 
109
  def get_config(self):
110
  return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()}
111
 
112
  class SentenceEncoder(tf.keras.Model):
113
+ def __init__(self, vocab_size, embed_dim=384, latent_dim=384, max_len=128, pad_id=pad_id):
114
  super().__init__()
115
  self.pad_id = pad_id
116
  self.embed = layers.Embedding(vocab_size, embed_dim)
117
  self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
118
+ self.blocks = [EncoderBlock() for _ in range(2)]
119
  self.attn_pool = layers.Dense(1)
120
  self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
121
  self.latent = layers.Dense(latent_dim, activation=None) # tanh 제거
 
125
  positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
126
  x_embed = self.embed(x) + self.pos_embed(positions)
127
  mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
 
128
  x = x_embed
129
  for block in self.blocks:
130
+ x = block(x, mask)
131
  x = self.ln_f(x)
132
 
133
  scores = self.attn_pool(x)
 
136
  pooled = tf.reduce_sum(x * scores, axis=1)
137
 
138
  latent = self.latent(pooled)
139
+ return self.l2norm(latent) # L2 정규화 후 반환
140
+
141
  # 3️⃣ 모델 로드
142
  # ===============================
143
  encoder = SentenceEncoder(vocab_size=vocab_size)