import spaces from kokoro import KModel, KPipeline import gradio as gr import os import random import torch import re IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') CUDA_AVAILABLE = torch.cuda.is_available() if not IS_DUPLICATE: import kokoro import misaki print('DEBUG', kokoro.__version__, CUDA_AVAILABLE, misaki.__version__) try: import phonemizer global_phonemizer_en = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) PHONEMIZER_AVAILABLE = True global_phonemizer_en = None except ImportError: PHONEMIZER_AVAILABLE = False try: from pygoruut.pygoruut import Pygoruut, PygoruutLanguages pygoruut = Pygoruut() goruut_langs = PygoruutLanguages() # global_phonemizer_en = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) PYGORUUT_AVAILABLE = True except ImportError: PYGORUUT_AVAILABLE = False #todo PYGORUUT_AVAILABLE = False CHAR_LIMIT = None if IS_DUPLICATE else 5000 models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'} pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' def text_to_ipa(text, lang='en-us'): """Convert text to IPA using phonemizer or return original text""" if not PHONEMIZER_AVAILABLE: return text try: # Handle IPA sections within brackets regex = r"\([^\]]*\)[[^\]]*\]" ipa_sections = re.findall(regex, text) print(text) text = re.sub(regex, '()[]', text) print(text) if lang == 'jb': # Lojban language import lojban ps = f'[{text}](/'+ lojban.lojban2ipa(text, 'vits') +'/)' elif lang in LANG_NAMES: local_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True, with_stress=True) ps = local_phonemizer.phonemize([text]) ps = f'[{text}](/'+ ps[0] +'/)' else: ps = text print(ps) # Add back IPA sections for ipa in ipa_sections: ps = ps.replace('( )[ ]', ipa, 1) print(ps) return ps except Exception as e: print(f"Phonemizer error: {e}") return text @spaces.GPU(duration=30) def forward_gpu(ps, ref_s, speed): return models[True](ps, ref_s, speed) def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE, lang='en-us'): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] # Convert text to IPA if not English if lang != 'en-us': if (PYGORUUT_AVAILABLE): text = goruut_phonemize(text, lang, False, False) else: text = text_to_ipa(text, lang) pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) return (24000, audio.numpy()), ps return None, '' # Arena API def predict(text, voice='af_heart', speed=1): """ Convert the text into speech using Kokoro American English and British English voice models. Args: text: string; accepts IPA within ()[] brackets voice: Literal['af_heart', 'af_bella', 'af_nicole', 'af_aoede', 'af_kore', 'af_sarah', 'af_nova', 'af_sky', 'af_alloy', 'af_jessica', 'af_river', 'am_michael', 'am_fenrir', 'am_puck', 'am_echo', 'am_eric', 'am_liam', 'am_onyx', 'am_santa', 'am_adam', 'bf_emma', 'bf_isabella', 'bf_alice', 'bf_lily', 'bm_george', 'bm_fable', 'bm_lewis', 'bm_daniel']; voice model lang: Literal['en-us', 'cs', 'da', 'nl', 'et', 'fi', 'fr', 'de', 'el', 'it', 'no', 'pl', 'pt', 'ru', 'sl', 'es', 'sv', 'tr', 'jb']; ISO 639-1 code for the text language; 'jb' is a valid code for Lojban speed: talkback speed; 0.5-2 Returns: Tuple of (output_audio_path, ipa_results) where output_audio_path is the filepath of output audio """ return generate_first(text, voice, speed, use_gpu=False)[0] def tokenize_first(text, voice='af_heart', lang='en-us'): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] # Convert text to IPA if not English or if language is specified if lang != 'en-us': text = text_to_ipa(text, lang) pipeline = pipelines[voice[0]] for _, ps, _ in pipeline(text, voice): return ps return '' def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE, lang='en-us'): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] # Convert text to IPA if not English or if language is specified if lang != 'en-us': text = text_to_ipa(text, lang) pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE first = True for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Switching to CPU') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) yield 24000, audio.numpy() if first: first = False yield 24000, torch.zeros(1).numpy() with open('en.txt', 'r') as r: random_quotes = [line.strip() for line in r] def get_random_quote(): return random.choice(random_quotes) def get_gatsby(): with open('gatsby5k.md', 'r') as r: return r.read().strip() def get_frankenstein(): with open('frankenstein5k.md', 'r') as r: return r.read().strip() def filter_languages(search_text, selected_languages): all_languages = languages.get_all_supported_languages() # Extract last entry from search input search_terms = search_text.replace(",,", ",").split(",") if search_text else [] last_term = search_terms[-1] if search_terms else "" # Filter available languages filtered = [lang for lang in all_languages if last_term == "" or (last_term.lower() in lang.lower())] # If no results, show a message instead if not filtered: filtered = ["No match found..."] else: filtered = [filtered[0] + "..."] + filtered return gr.update(choices=filtered), filtered[0] # Keep dropdown open and selectable def dephon_offline(txt, language_tag, is_reverse, is_punct): try: response = pygoruut.phonemize(language=language_tag, sentence=txt, is_reverse=is_reverse) except TypeError: return '' if not response or not response.Words: return '' if is_punct: phonetic_line = str(response) else: phonetic_line = " ".join(word.Phonetic for word in response.Words) return phonetic_line def goruut_phonemize(sentence, language, is_reverse, is_punct): return dephon_offline(sentence, language.strip(","), is_reverse, is_punct) CHOICES = { '🇺🇸 🚺 Heart ❤️': 'af_heart', '🇺🇸 🚺 Bella 🔥': 'af_bella', '🇺🇸 🚺 Nicole 🎧': 'af_nicole', '🇺🇸 🚺 Aoede': 'af_aoede', '🇺🇸 🚺 Kore': 'af_kore', '🇺🇸 🚺 Sarah': 'af_sarah', '🇺🇸 🚺 Nova': 'af_nova', '🇺🇸 🚺 Sky': 'af_sky', '🇺🇸 🚺 Alloy': 'af_alloy', '🇺🇸 🚺 Jessica': 'af_jessica', '🇺🇸 🚺 River': 'af_river', '🇺🇸 🚹 Michael': 'am_michael', '🇺🇸 🚹 Fenrir': 'am_fenrir', '🇺🇸 🚹 Puck': 'am_puck', '🇺🇸 🚹 Echo': 'am_echo', '🇺🇸 🚹 Eric': 'am_eric', '🇺🇸 🚹 Liam': 'am_liam', '🇺🇸 🚹 Onyx': 'am_onyx', '🇺🇸 🚹 Santa': 'am_santa', '🇺🇸 🚹 Adam': 'am_adam', '🇬🇧 🚺 Emma': 'bf_emma', '🇬🇧 🚺 Isabella': 'bf_isabella', '🇬🇧 🚺 Alice': 'bf_alice', '🇬🇧 🚺 Lily': 'bf_lily', '🇬🇧 🚹 George': 'bm_george', '🇬🇧 🚹 Fable': 'bm_fable', '🇬🇧 🚹 Lewis': 'bm_lewis', '🇬🇧 🚹 Daniel': 'bm_daniel', } for v in CHOICES.values(): pipelines[v[0]].load_voice(v) TOKEN_NOTE = ''' 💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)` 💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ` ⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)` ⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words) ''' with gr.Blocks() as generate_tab: out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) generate_btn = gr.Button('Generate', variant='primary') with gr.Accordion('Output Tokens', open=True): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') tokenize_btn = gr.Button('Tokenize', variant='secondary') gr.Markdown(TOKEN_NOTE) predict_btn = gr.Button('Predict', variant='secondary', visible=False) STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.'] if CHAR_LIMIT is not None: STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.') STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:') STREAM_NOTE = '\n\n'.join(STREAM_NOTE) with gr.Blocks() as stream_tab: out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True) with gr.Row(): stream_btn = gr.Button('Stream', variant='primary') stop_btn = gr.Button('Stop', variant='stop') with gr.Accordion('Note', open=True): gr.Markdown(STREAM_NOTE) gr.DuplicateButton() BANNER_TEXT = ''' [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M) This demo uses native US English and British English speakers. But also supports multiple languages using G2P and phonemizer. Select your language below! ''' API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' API_NAME = None if API_OPEN else False # Language choices for the dropdown LANGUAGE_CHOICES = [ ['English (US)', 'en-us'], ['Lojban', 'jb'], ['Czech (Non-native)', 'cs'], ['Danish (Non-native)', 'da'], ['Dutch (Non-native)', 'nl'], ['Estonian (Non-native)', 'et'], ['Finnish (Non-native)', 'fi'], ['French (Non-native)', 'fr'], ['German (Non-native)', 'de'], ['Greek (Non-native)', 'el'], ['Italian (Non-native)', 'it'], ['Norwegian (Non-native)', 'no'], ['Polish (Non-native)', 'pl'], ['Portuguese (Non-native)', 'pt'], ['Russian (Non-native)', 'ru'], ['Slovene (Non-native)', 'sl'], ['Spanish (Non-native)', 'es'], ['Swedish (Non-native)', 'sv'], ['Turkish (Non-native)', 'tr'], ] with gr.Blocks() as app: with gr.Row(): gr.Markdown(BANNER_TEXT, container=True) with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream. Supports IPA within ()[] parethesis and brackets.") with gr.Row(): voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') use_gpu = gr.Dropdown( [('ZeroGPU 🚀', True), ('CPU 🐌', False)], value=CUDA_AVAILABLE, label='Hardware', info='GPU is usually faster, but has a usage quota', interactive=CUDA_AVAILABLE ) with gr.Row(): if (PYGORUUT_AVAILABLE): # Goruut lang = gr.Dropdown( label="Available Languages", choices=goruut_langs.get_all_supported_languages(), interactive=True, allow_custom_value=False ) else: # G2P lang = gr.Dropdown( LANGUAGE_CHOICES, value='en-us', label="Language", info="Select language for G2P processing" ) speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary') with gr.Row(): gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary') frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary') with gr.Column(): gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream']) random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME) gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME) frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME) generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu, lang], outputs=[out_audio, out_ps], api_name=API_NAME) tokenize_btn.click(fn=tokenize_first, inputs=[text, voice, lang], outputs=[out_ps], api_name=API_NAME) stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu, lang], outputs=[out_stream], api_name=API_NAME) stop_btn.click(fn=None, cancels=stream_event) predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) if __name__ == '__main__': app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True, mcp_server=API_OPEN)