Spaces:
Runtime error
Runtime error
Commit
·
76ed6d2
1
Parent(s):
9d92eeb
- __pycache__/main.cpython-310.pyc +0 -0
- app.py +12 -30
- main.py +55 -35
__pycache__/main.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -106,43 +106,21 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 106 |
if not selected_questions:
|
| 107 |
st.warning("Please select at least one question.")
|
| 108 |
else:
|
| 109 |
-
|
| 110 |
progress_bar = st.progress(0)
|
| 111 |
num_questions = len(selected_questions)
|
| 112 |
results = []
|
| 113 |
|
| 114 |
-
# Stop button
|
| 115 |
stop_button = st.button("Stop Benchmark")
|
| 116 |
|
| 117 |
-
# Benchmarking
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
-
if execution_mode == "Sequential":
|
| 124 |
-
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key)
|
| 125 |
-
else: # Multithreaded
|
| 126 |
-
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads)
|
| 127 |
-
|
| 128 |
-
results.extend(question_results)
|
| 129 |
-
|
| 130 |
-
# Update progress bar
|
| 131 |
-
progress_bar.progress((i + 1) / num_questions)
|
| 132 |
-
|
| 133 |
-
# Check if stop button is clicked
|
| 134 |
-
if stop_button:
|
| 135 |
-
st.warning("Benchmark stopped!")
|
| 136 |
-
break # Exit the loop
|
| 137 |
-
|
| 138 |
-
# Display results (even if interrupted)
|
| 139 |
-
st.write("Results:")
|
| 140 |
-
# ... (table generation logic - Same as before)
|
| 141 |
-
|
| 142 |
-
if stop_button:
|
| 143 |
-
st.warning("Partial results displayed due to interruption.")
|
| 144 |
-
else:
|
| 145 |
-
st.success("Benchmark completed!")
|
| 146 |
|
| 147 |
# Display results in a table
|
| 148 |
st.write("Results:")
|
|
@@ -157,6 +135,10 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 157 |
})
|
| 158 |
st.table(results_table)
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
else:
|
| 162 |
st.warning("Please confirm your API keys first.")
|
|
|
|
| 106 |
if not selected_questions:
|
| 107 |
st.warning("Please select at least one question.")
|
| 108 |
else:
|
| 109 |
+
# Initialize progress bar
|
| 110 |
progress_bar = st.progress(0)
|
| 111 |
num_questions = len(selected_questions)
|
| 112 |
results = []
|
| 113 |
|
| 114 |
+
# Stop button (not implemented yet)
|
| 115 |
stop_button = st.button("Stop Benchmark")
|
| 116 |
|
| 117 |
+
# Benchmarking logic using the chosen execution mode
|
| 118 |
+
if execution_mode == "Sequential":
|
| 119 |
+
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key)
|
| 120 |
+
else: # Multithreaded
|
| 121 |
+
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads)
|
| 122 |
|
| 123 |
+
results.extend(question_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
# Display results in a table
|
| 126 |
st.write("Results:")
|
|
|
|
| 135 |
})
|
| 136 |
st.table(results_table)
|
| 137 |
|
| 138 |
+
if stop_button:
|
| 139 |
+
st.warning("Partial results displayed due to interruption.")
|
| 140 |
+
else:
|
| 141 |
+
st.success("Benchmark completed!")
|
| 142 |
|
| 143 |
else:
|
| 144 |
st.warning("Please confirm your API keys first.")
|
main.py
CHANGED
|
@@ -7,50 +7,65 @@ import threading
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
|
| 9 |
|
| 10 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
start_time = time.time()
|
| 12 |
-
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True)
|
| 13 |
previous_answers = []
|
| 14 |
question_novelty = 0
|
| 15 |
|
| 16 |
try:
|
| 17 |
while True:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 21 |
-
openai_api_key=openai_api_key)
|
| 22 |
-
except Exception as e:
|
| 23 |
-
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
| 24 |
-
unsafe_allow_html=True) # Display error in red
|
| 25 |
break
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
try:
|
| 30 |
-
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 31 |
-
openai_api_key=openai_api_key)
|
| 32 |
-
except Exception as e:
|
| 33 |
-
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
| 34 |
-
unsafe_allow_html=True) # Display error in red
|
| 35 |
break
|
| 36 |
|
| 37 |
-
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 38 |
-
|
| 39 |
if coherence_score <= 3:
|
| 40 |
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
| 41 |
-
unsafe_allow_html=True)
|
| 42 |
break
|
| 43 |
|
| 44 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 45 |
|
| 46 |
if novelty_score < 0.1:
|
| 47 |
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
| 48 |
-
unsafe_allow_html=True)
|
| 49 |
break
|
| 50 |
|
| 51 |
st.write(f"**New Answer:**\n{new_answer}")
|
| 52 |
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
| 53 |
-
unsafe_allow_html=True)
|
| 54 |
st.write(f"**Novelty Score:** {novelty_score}")
|
| 55 |
|
| 56 |
previous_answers.append(new_answer)
|
|
@@ -58,19 +73,18 @@ def process_question(question, model_name, open_router_key, openai_api_key, prog
|
|
| 58 |
|
| 59 |
except Exception as e:
|
| 60 |
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
| 61 |
-
unsafe_allow_html=True)
|
| 62 |
|
| 63 |
time_taken = time.time() - start_time
|
| 64 |
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
| 65 |
-
unsafe_allow_html=True)
|
| 66 |
st.write(f"<span style='color:blue'>Time taken: {time_taken} seconds</span>",
|
| 67 |
-
unsafe_allow_html=True)
|
| 68 |
|
| 69 |
# Update progress
|
| 70 |
with progress_lock:
|
| 71 |
completed_questions += 1
|
| 72 |
progress = completed_questions / total_questions
|
| 73 |
-
st.progress(progress) # Update the progress bar
|
| 74 |
|
| 75 |
return question_novelty, [
|
| 76 |
{
|
|
@@ -103,12 +117,11 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
|
|
| 103 |
return novelty
|
| 104 |
|
| 105 |
|
| 106 |
-
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None):
|
| 107 |
novelty_score = 0
|
| 108 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
| 109 |
results = []
|
| 110 |
completed_questions = 0 # Shared variable to track progress
|
| 111 |
-
progress_lock = threading.Lock() # Lock for protecting completed_questions
|
| 112 |
|
| 113 |
# Use max_threads if provided, otherwise default to the number of questions
|
| 114 |
if max_threads is None:
|
|
@@ -118,7 +131,7 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 118 |
|
| 119 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 120 |
future_to_question = {executor.submit(
|
| 121 |
-
process_question, question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, len(questions)): question for question in questions}
|
| 122 |
|
| 123 |
for future in as_completed(future_to_question):
|
| 124 |
question = future_to_question[future]
|
|
@@ -128,25 +141,32 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 128 |
with print_lock:
|
| 129 |
novelty_score += question_novelty
|
| 130 |
results.extend(question_results)
|
| 131 |
-
st.write(
|
|
|
|
|
|
|
| 132 |
except Exception as e:
|
| 133 |
with print_lock:
|
| 134 |
st.write(f"<span style='color:red'>Error in thread: {str(e)}</span>", unsafe_allow_html=True)
|
| 135 |
|
| 136 |
-
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
|
|
|
| 137 |
return results
|
| 138 |
|
| 139 |
|
| 140 |
-
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key):
|
| 141 |
novelty_score = 0
|
| 142 |
results = []
|
| 143 |
|
| 144 |
for i, question in enumerate(questions):
|
| 145 |
-
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key,
|
|
|
|
| 146 |
novelty_score += question_novelty
|
| 147 |
results.extend(question_results)
|
| 148 |
-
st.write(
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
|
|
|
| 151 |
|
| 152 |
return results
|
|
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
|
| 9 |
|
| 10 |
+
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
| 11 |
+
"""Generates an answer to a question using the specified language model."""
|
| 12 |
+
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 13 |
+
try:
|
| 14 |
+
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 15 |
+
openai_api_key=openai_api_key)
|
| 16 |
+
return new_answer
|
| 17 |
+
except Exception as e:
|
| 18 |
+
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
| 19 |
+
unsafe_allow_html=True)
|
| 20 |
+
return None
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def evaluate_answer(question, new_answer, open_router_key, openai_api_key):
|
| 24 |
+
"""Evaluates the coherence and novelty of an answer."""
|
| 25 |
+
judge_prompt = create_judge_prompt(question, new_answer)
|
| 26 |
+
judge = "openai/gpt-4o-mini"
|
| 27 |
+
try:
|
| 28 |
+
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 29 |
+
openai_api_key=openai_api_key)
|
| 30 |
+
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 31 |
+
return coherence_score
|
| 32 |
+
except Exception as e:
|
| 33 |
+
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
| 34 |
+
unsafe_allow_html=True)
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def process_question(question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, total_questions, progress):
|
| 39 |
start_time = time.time()
|
| 40 |
+
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True)
|
| 41 |
previous_answers = []
|
| 42 |
question_novelty = 0
|
| 43 |
|
| 44 |
try:
|
| 45 |
while True:
|
| 46 |
+
new_answer = generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key)
|
| 47 |
+
if new_answer is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
break
|
| 49 |
|
| 50 |
+
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key)
|
| 51 |
+
if coherence_score is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
break
|
| 53 |
|
|
|
|
|
|
|
| 54 |
if coherence_score <= 3:
|
| 55 |
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
| 56 |
+
unsafe_allow_html=True)
|
| 57 |
break
|
| 58 |
|
| 59 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 60 |
|
| 61 |
if novelty_score < 0.1:
|
| 62 |
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
| 63 |
+
unsafe_allow_html=True)
|
| 64 |
break
|
| 65 |
|
| 66 |
st.write(f"**New Answer:**\n{new_answer}")
|
| 67 |
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
| 68 |
+
unsafe_allow_html=True)
|
| 69 |
st.write(f"**Novelty Score:** {novelty_score}")
|
| 70 |
|
| 71 |
previous_answers.append(new_answer)
|
|
|
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
| 76 |
+
unsafe_allow_html=True)
|
| 77 |
|
| 78 |
time_taken = time.time() - start_time
|
| 79 |
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
| 80 |
+
unsafe_allow_html=True)
|
| 81 |
st.write(f"<span style='color:blue'>Time taken: {time_taken} seconds</span>",
|
| 82 |
+
unsafe_allow_html=True)
|
| 83 |
|
| 84 |
# Update progress
|
| 85 |
with progress_lock:
|
| 86 |
completed_questions += 1
|
| 87 |
progress = completed_questions / total_questions
|
|
|
|
| 88 |
|
| 89 |
return question_novelty, [
|
| 90 |
{
|
|
|
|
| 117 |
return novelty
|
| 118 |
|
| 119 |
|
| 120 |
+
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, progress=0, progress_lock=None):
|
| 121 |
novelty_score = 0
|
| 122 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
| 123 |
results = []
|
| 124 |
completed_questions = 0 # Shared variable to track progress
|
|
|
|
| 125 |
|
| 126 |
# Use max_threads if provided, otherwise default to the number of questions
|
| 127 |
if max_threads is None:
|
|
|
|
| 131 |
|
| 132 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 133 |
future_to_question = {executor.submit(
|
| 134 |
+
process_question, question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, len(questions), progress): question for question in questions}
|
| 135 |
|
| 136 |
for future in as_completed(future_to_question):
|
| 137 |
question = future_to_question[future]
|
|
|
|
| 141 |
with print_lock:
|
| 142 |
novelty_score += question_novelty
|
| 143 |
results.extend(question_results)
|
| 144 |
+
st.write(
|
| 145 |
+
f"<span style='color:yellow'>Total novelty score across all questions (so far): {novelty_score}</span>",
|
| 146 |
+
unsafe_allow_html=True)
|
| 147 |
except Exception as e:
|
| 148 |
with print_lock:
|
| 149 |
st.write(f"<span style='color:red'>Error in thread: {str(e)}</span>", unsafe_allow_html=True)
|
| 150 |
|
| 151 |
+
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 152 |
+
unsafe_allow_html=True)
|
| 153 |
return results
|
| 154 |
|
| 155 |
|
| 156 |
+
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, progress=0, progress_lock=None):
|
| 157 |
novelty_score = 0
|
| 158 |
results = []
|
| 159 |
|
| 160 |
for i, question in enumerate(questions):
|
| 161 |
+
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key,
|
| 162 |
+
progress_lock, i, len(questions), progress)
|
| 163 |
novelty_score += question_novelty
|
| 164 |
results.extend(question_results)
|
| 165 |
+
st.write(
|
| 166 |
+
f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>",
|
| 167 |
+
unsafe_allow_html=True) # Display progress after each question
|
| 168 |
|
| 169 |
+
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 170 |
+
unsafe_allow_html=True)
|
| 171 |
|
| 172 |
return results
|