Spaces:
Sleeping
Sleeping
Update train_dclr_model.py
Browse files- train_dclr_model.py +82 -202
train_dclr_model.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
@@ -6,7 +5,7 @@ import torchvision
|
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
from torch.utils.data import DataLoader
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
-
|
| 10 |
|
| 11 |
# Import the DCLR optimizer from the local file
|
| 12 |
from dclr_optimizer import DCLR
|
|
@@ -28,211 +27,92 @@ class SimpleCNN(nn.Module):
|
|
| 28 |
x = F.relu(self.fc1(x))
|
| 29 |
return self.fc2(x)
|
| 30 |
|
| 31 |
-
# === Self-contained Lion optimizer (no external dependency) ===
|
| 32 |
-
class Lion(torch.optim.Optimizer):
|
| 33 |
-
"""
|
| 34 |
-
Minimal Lion optimizer implementation (Chen et al., 2023).
|
| 35 |
-
Uses sign of momentum with weight decay. Works for standard use-cases.
|
| 36 |
-
"""
|
| 37 |
-
def __init__(self, params, lr=1e-3, betas=(0.9, 0.99), weight_decay=0.0):
|
| 38 |
-
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 39 |
-
super().__init__(params, defaults)
|
| 40 |
-
|
| 41 |
-
@torch.no_grad()
|
| 42 |
-
def step(self):
|
| 43 |
-
for group in self.param_groups:
|
| 44 |
-
lr = group['lr']
|
| 45 |
-
beta1, beta2 = group['betas']
|
| 46 |
-
wd = group['weight_decay']
|
| 47 |
-
|
| 48 |
-
for p in group['params']:
|
| 49 |
-
if p.grad is None:
|
| 50 |
-
continue
|
| 51 |
-
grad = p.grad
|
| 52 |
-
|
| 53 |
-
# weight decay
|
| 54 |
-
if wd != 0:
|
| 55 |
-
grad = grad.add(p, alpha=wd)
|
| 56 |
-
|
| 57 |
-
state = self.state[p]
|
| 58 |
-
if len(state) == 0:
|
| 59 |
-
state['exp_avg'] = torch.zeros_like(p)
|
| 60 |
-
|
| 61 |
-
exp_avg = state['exp_avg']
|
| 62 |
-
# Update momentum
|
| 63 |
-
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
| 64 |
-
|
| 65 |
-
# Parameter update: sign of momentum + sign of gradient blend
|
| 66 |
-
update = exp_avg.mul(beta1).add(grad, alpha=1 - beta1)
|
| 67 |
-
p.add_(torch.sign(update), alpha=-lr)
|
| 68 |
-
|
| 69 |
# === CIFAR-10 Data Loading ===
|
| 70 |
-
|
| 71 |
-
transforms.RandomCrop(32, padding=4),
|
| 72 |
-
transforms.RandomHorizontalFlip(),
|
| 73 |
transforms.ToTensor(),
|
| 74 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 75 |
])
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
test_loader = DataLoader(test_set, batch_size=128, shuffle=False, num_workers=2)
|
| 87 |
-
|
| 88 |
-
# === Utility: Train and evaluate with a given optimizer ===
|
| 89 |
-
def train_and_evaluate(optimizer_name, optimizer_ctor, optimizer_kwargs, epochs=20, save_prefix=""):
|
| 90 |
-
model = SimpleCNN()
|
| 91 |
-
criterion = nn.CrossEntropyLoss()
|
| 92 |
-
optimizer = optimizer_ctor(model.parameters(), **optimizer_kwargs)
|
| 93 |
-
|
| 94 |
-
losses = []
|
| 95 |
-
accs = []
|
| 96 |
-
|
| 97 |
-
print(f"Starting training [{optimizer_name}] for {epochs} epochs...")
|
| 98 |
-
for epoch in range(epochs):
|
| 99 |
-
model.train()
|
| 100 |
-
running_loss = 0.0
|
| 101 |
-
correct = 0
|
| 102 |
-
total = 0
|
| 103 |
-
for inputs, labels in train_loader:
|
| 104 |
-
optimizer.zero_grad()
|
| 105 |
-
outputs = model(inputs)
|
| 106 |
-
loss = criterion(outputs, labels)
|
| 107 |
-
loss.backward()
|
| 108 |
-
|
| 109 |
-
# DCLR requires output_activations argument
|
| 110 |
-
if optimizer_name.lower() == "dclr":
|
| 111 |
-
if hasattr(optimizer, "step"):
|
| 112 |
-
optimizer.step(output_activations=outputs)
|
| 113 |
-
else:
|
| 114 |
-
raise RuntimeError("DCLR optimizer missing step(output_activations=...)")
|
| 115 |
-
else:
|
| 116 |
-
optimizer.step()
|
| 117 |
-
|
| 118 |
-
running_loss += loss.item()
|
| 119 |
-
_, predicted = outputs.max(1)
|
| 120 |
-
total += labels.size(0)
|
| 121 |
-
correct += predicted.eq(labels).sum().item()
|
| 122 |
-
|
| 123 |
-
epoch_loss = running_loss / len(train_loader)
|
| 124 |
-
epoch_acc = 100.0 * correct / total
|
| 125 |
-
losses.append(epoch_loss)
|
| 126 |
-
accs.append(epoch_acc)
|
| 127 |
-
print(f"[{optimizer_name}] Epoch {epoch+1}/{epochs} - Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.2f}%")
|
| 128 |
-
|
| 129 |
-
print(f"Training complete for [{optimizer_name}]. Evaluating on test set...")
|
| 130 |
-
model.eval()
|
| 131 |
correct = 0
|
| 132 |
total = 0
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# ===
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
epochs = 20
|
| 196 |
-
|
| 197 |
-
# DCLR (using your tuned hyperparams)
|
| 198 |
-
dclr_results = train_and_evaluate(
|
| 199 |
-
optimizer_name="DCLR",
|
| 200 |
-
optimizer_ctor=lambda params, lr, lambda_, verbose=False: DCLR(params, lr=lr, lambda_=lambda_, verbose=verbose),
|
| 201 |
-
optimizer_kwargs={"lr": 0.1, "lambda_": 0.1, "verbose": False},
|
| 202 |
-
epochs=epochs,
|
| 203 |
-
save_prefix="dclr"
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
# Adam
|
| 207 |
-
adam_results = train_and_evaluate(
|
| 208 |
-
optimizer_name="Adam",
|
| 209 |
-
optimizer_ctor=lambda params, lr: torch.optim.Adam(params, lr=lr),
|
| 210 |
-
optimizer_kwargs={"lr": 0.001},
|
| 211 |
-
epochs=epochs,
|
| 212 |
-
save_prefix="adam"
|
| 213 |
-
)
|
| 214 |
-
|
| 215 |
-
# Lion
|
| 216 |
-
lion_results = train_and_evaluate(
|
| 217 |
-
optimizer_name="Lion",
|
| 218 |
-
optimizer_ctor=lambda params, lr, betas, weight_decay: Lion(params, lr=lr, betas=betas, weight_decay=weight_decay),
|
| 219 |
-
optimizer_kwargs={"lr": 0.001, "betas": (0.9, 0.99), "weight_decay": 0.0},
|
| 220 |
-
epochs=epochs,
|
| 221 |
-
save_prefix="lion"
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
# Combined benchmark ledger
|
| 225 |
-
ledger_path = "benchmark_results.txt"
|
| 226 |
-
with open(ledger_path, "w") as f:
|
| 227 |
-
f.write(f"Run timestamp: {datetime.utcnow().isoformat()}Z\n")
|
| 228 |
-
f.write(f"DCLR: {dclr_results['test_acc']:.2f}%\n")
|
| 229 |
-
f.write(f"Adam: {adam_results['test_acc']:.2f}%\n")
|
| 230 |
-
f.write(f"Lion: {lion_results['test_acc']:.2f}%\n")
|
| 231 |
-
print(f"Benchmark results saved to {ledger_path}")
|
| 232 |
-
|
| 233 |
-
# Symlink or copy DCLR artifacts to legacy names for existing app (optional)
|
| 234 |
-
# If your current app expects specific filenames at repo root, you can create copies:
|
| 235 |
-
# For a clean setup, prefer reading from artifacts/ in app.py.
|
| 236 |
-
|
| 237 |
-
if __name__ == "__main__":
|
| 238 |
-
main()
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
|
|
|
| 5 |
import torchvision.transforms as transforms
|
| 6 |
from torch.utils.data import DataLoader
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
# Import the DCLR optimizer from the local file
|
| 11 |
from dclr_optimizer import DCLR
|
|
|
|
| 27 |
x = F.relu(self.fc1(x))
|
| 28 |
return self.fc2(x)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# === CIFAR-10 Data Loading ===
|
| 31 |
+
transform = transforms.Compose([
|
|
|
|
|
|
|
| 32 |
transforms.ToTensor(),
|
| 33 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 34 |
])
|
| 35 |
|
| 36 |
+
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
| 37 |
+
train_loader = DataLoader(train_set, batch_size=128, shuffle=True)
|
| 38 |
+
|
| 39 |
+
test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
| 40 |
+
test_loader = DataLoader(test_set, batch_size=128, shuffle=False)
|
| 41 |
+
|
| 42 |
+
# === Training Configuration ===
|
| 43 |
+
model = SimpleCNN()
|
| 44 |
+
optimizer = DCLR(model.parameters(), lr=0.1, lambda_=0.1, verbose=False)
|
| 45 |
+
criterion = nn.CrossEntropyLoss()
|
| 46 |
+
epochs = 20
|
| 47 |
+
|
| 48 |
+
print(f"Starting training with DCLR for {epochs} epochs...")
|
| 49 |
+
|
| 50 |
+
losses, accs = [], []
|
| 51 |
|
| 52 |
+
# === Training Loop ===
|
| 53 |
+
for epoch in range(epochs):
|
| 54 |
+
model.train()
|
| 55 |
+
running_loss = 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
correct = 0
|
| 57 |
total = 0
|
| 58 |
+
for inputs, labels in train_loader:
|
| 59 |
+
optimizer.zero_grad()
|
| 60 |
+
outputs = model(inputs)
|
| 61 |
+
loss = criterion(outputs, labels)
|
| 62 |
+
loss.backward()
|
| 63 |
+
optimizer.step(output_activations=outputs)
|
| 64 |
+
|
| 65 |
+
running_loss += loss.item()
|
| 66 |
+
_, predicted = outputs.max(1)
|
| 67 |
+
total += labels.size(0)
|
| 68 |
+
correct += predicted.eq(labels).sum().item()
|
| 69 |
+
|
| 70 |
+
epoch_loss = running_loss / len(train_loader)
|
| 71 |
+
epoch_acc = 100.0 * correct / total
|
| 72 |
+
losses.append(epoch_loss)
|
| 73 |
+
accs.append(epoch_acc)
|
| 74 |
+
print(f"Epoch {epoch+1}/{epochs} - Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%")
|
| 75 |
+
|
| 76 |
+
print("Training complete.")
|
| 77 |
+
|
| 78 |
+
# === Evaluate on Test Set ===
|
| 79 |
+
model.eval()
|
| 80 |
+
correct = 0
|
| 81 |
+
total = 0
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
for inputs, labels in test_loader:
|
| 84 |
+
outputs = model(inputs)
|
| 85 |
+
_, predicted = outputs.max(1)
|
| 86 |
+
total += labels.size(0)
|
| 87 |
+
correct += predicted.eq(labels).sum().item()
|
| 88 |
+
|
| 89 |
+
test_acc = 100.0 * correct / total
|
| 90 |
+
print(f"Final Test Accuracy: {test_acc:.2f}%")
|
| 91 |
+
|
| 92 |
+
# === Save the Trained Model ===
|
| 93 |
+
torch.save(model.state_dict(), 'simple_cnn_dclr_tuned.pth')
|
| 94 |
+
print("Model saved to simple_cnn_dclr_tuned.pth")
|
| 95 |
+
|
| 96 |
+
# === Save Training Performance Plot ===
|
| 97 |
+
plt.figure()
|
| 98 |
+
plt.plot(range(1, epochs+1), losses, label='Loss')
|
| 99 |
+
plt.plot(range(1, epochs+1), accs, label='Accuracy')
|
| 100 |
+
plt.xlabel('Epoch')
|
| 101 |
+
plt.ylabel('Value')
|
| 102 |
+
plt.legend()
|
| 103 |
+
plt.title('Training Performance on CIFAR-10 (DCLR)')
|
| 104 |
+
plt.savefig('training_performance.png')
|
| 105 |
+
print("Training performance plot saved to training_performance.png")
|
| 106 |
+
|
| 107 |
+
# === Save Final Test Accuracy Plot ===
|
| 108 |
+
plt.figure()
|
| 109 |
+
plt.bar(['CIFAR-10'], [test_acc])
|
| 110 |
+
plt.ylabel('Accuracy (%)')
|
| 111 |
+
plt.title('Final Test Accuracy (DCLR)')
|
| 112 |
+
plt.savefig('final_test_accuracy.png')
|
| 113 |
+
print("Final test accuracy plot saved to final_test_accuracy.png")
|
| 114 |
+
|
| 115 |
+
# === Save Final Test Accuracy Number ===
|
| 116 |
+
with open("final_test_accuracy.txt", "w") as f:
|
| 117 |
+
f.write(f"{test_acc:.2f}")
|
| 118 |
+
print("Final test accuracy saved to final_test_accuracy.txt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|