import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # Import the DCLR optimizer from the local file from dclr_optimizer import DCLR # === Simple CNN Model Definition === class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 64 * 8 * 8) x = F.relu(self.fc1(x)) return self.fc2(x) # === CIFAR-10 Data Loading === transform = transforms.Compose([transforms.ToTensor()]) train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = DataLoader(train_set, batch_size=128, shuffle=True) # === Training Configuration === model = SimpleCNN() # Instantiate DCLR with best-tuned hyperparameters best_lr = 0.1 best_lambda = 0.1 optimizer = DCLR(model.parameters(), lr=best_lr, lambda_=best_lambda, verbose=False) criterion = nn.CrossEntropyLoss() extended_epochs = 20 print(f"Starting training for SimpleCNN with DCLR (lr={best_lr}, lambda_={best_lambda}) for {extended_epochs} epochs...") # === Training Loop === for epoch in range(extended_epochs): model.train() running_loss = 0.0 correct = 0 total = 0 for batch_idx, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() # DCLR requires output_activations for its step method optimizer.step(output_activations=outputs) running_loss += loss.item() _, predicted = outputs.max(1) total += labels.size(0) correct += predicted.eq(labels).sum().item() epoch_loss = running_loss / len(train_loader) epoch_acc = 100.0 * correct / total print(f"Epoch {epoch+1}/{extended_epochs} - Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%") print("Training complete.") # === Save the Trained Model === torch.save(model.state_dict(), 'simple_cnn_dclr_tuned.pth') print("Model saved to simple_cnn_dclr_tuned.pth")