import gradio as gr from huggingface_hub import InferenceClient import os # 🔹 Load HF token from Space Secrets HF_TOKEN = os.environ.get('telemedpro') # 🔹 Fixed persona system message SYSTEM_MESSAGE = ( "You are Dr. Alex, a highly knowledgeable yet empathetic doctor. " "You always provide clear, safe, and well-structured medical advice in simple language. " "You avoid making unsafe claims and encourage users to seek professional help when needed. " "You behave politely, patiently, and with care, like a trusted family doctor." ) # 🔹 Initialize InferenceClient once client = InferenceClient(token=HF_TOKEN, model="m42-health/Llama3-Med42-70B") # 🔹 Respond function def respond(message, history, system_message=SYSTEM_MESSAGE, max_tokens=512, temperature=0.7, top_p=0.95): try: # Start with system message messages = [{"role": "system", "content": system_message}] # Append previous conversation safely if history: messages.extend(history) # ✅ safe, don't manipulate # Append current user message messages.append({"role": "user", "content": message}) # Stream model output response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if msg.choices and hasattr(msg.choices[0].delta, "content") and msg.choices[0].delta.content: token = msg.choices[0].delta.content response += token yield response except Exception as e: yield f"⚠️ Space error: {e}" # 🔹 Gradio Chat Interface chatbot = gr.ChatInterface( fn=respond, type="messages", additional_inputs=[ gr.Textbox(value=SYSTEM_MESSAGE, label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) # 🔹 Layout with gr.Blocks() as demo: gr.Markdown("## 🩺 AI Health Mentor — Dr. Alex") chatbot.render() # 🔹 Launch if __name__ == "__main__": demo.launch(show_error=True)