Rajeev-86 commited on
Commit
7da107e
Β·
1 Parent(s): 370e492

Fixed README.md formatting

Browse files
Files changed (1) hide show
  1. README.md +29 -31
README.md CHANGED
@@ -31,28 +31,26 @@ The objective of this project is to develop and evaluate a robust image denoisin
31
 
32
  ##2. Few Results
33
 
34
- ![Alt text](images/filename.png)
35
 
36
  ##3. Project Structure
37
 
38
- β”œβ”€β”€ .gitignore
39
- β”œβ”€β”€ .github/workflows
40
- β”‚ β”œβ”€β”€ sync_to_hf.yml
41
- β”œβ”€β”€ Dockerfile
42
  β”œβ”€β”€ api-test.py
43
- β”œβ”€β”€ handler.py
44
- β”œβ”€β”€ requirements.txt
45
- β”œβ”€β”€ images
46
- β”‚
47
- β”œβ”€β”€ README.md
48
- └── (maybe some sample outputs/denoised images)
49
-
50
- [Dataset Preparation](https://drive.google.com/file/d/1hY0OBv0TI8dsP5Y2Le6IT9kFwPM_t8_V/view?usp=sharing)
51
- [UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-for-image-denoising)
52
- [Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-residual-unet-for-image-denoising)
53
- [CBAM-Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-with-residuals-and-cbam-layers)
54
- [TorchScript_comparison](https://drive.google.com/file/d/1JC6WIi59fppT78v5kl26VSD4tX73ikgg/view?usp=sharing)
55
- [Model Archiving](https://drive.google.com/file/d/1X4lMJYiC8ps3170X-Jj5-YvnaIDDvnbx/view?usp=sharing)
56
 
57
  ##4. Dataset Used
58
 
@@ -66,8 +64,8 @@ Structured Artifacts: JPEG compression with randomized quality (∈[70,95]).
66
 
67
  Due to the complex, non-linear nature of this hybrid noise model, we quantified the overall degradation using the Effective Noise Level (Οƒ eff), defined as the Standard Deviation of the entire noise residual (yβˆ’x) across the validation set. The measured effective noise level for the challenging dataset was Οƒeff =79.32 (scaled to 0-255). All performance metrics (PSNR, SSIM) presented below are reported against this highly degraded baseline.
68
 
69
- [Original Berkeley Segmentation Dataset 500 (BSDS500)](https://data.vision.ee.ethz.ch/cvl/DIV2K/)
70
- [GDrive link for our modified Dataset](https://drive.google.com/drive/folders/1AObLCZGTHvtcv-lZFGPBA8k8xgC1k4_w?usp=sharing)
71
 
72
  ##5. Model Architectures
73
 
@@ -88,7 +86,7 @@ Due to the complex, non-linear nature of this hybrid noise model, we quantified
88
  ##7. Optimization
89
  Comparing ordinary serlialization vs TorchScript inference time
90
 
91
- | Model | Avg. Inference Time (ms) |
92
  | -------------------------| ------------------------ |
93
  | U-Net | 39.18 % |
94
  | Residual U-Net | 43.77 % |
@@ -102,9 +100,9 @@ Containerization: Docker
102
 
103
  Deployment Platform: Hugging Face Spaces
104
 
105
- Artifacts: .mar model files stored in [Gdrive link](https://drive.google.com/drive/folders/1Arnlrjdxqd0zBaIC4ECigDxxSrgqyAHX?usp=sharing)
106
 
107
- [HuggingFace Space link](https://huggingface.co/spaces/Rexy-3d/Denoiser-Server)
108
 
109
  ##8. Frontend (Next.js)
110
 
@@ -114,7 +112,7 @@ Platform: Vercel
114
 
115
  Provides a simple web interface for uploading noisy images and visualizing denoised outputs.
116
 
117
- [Vercel webpage Link](https://denoiserbyrajeev.vercel.app/)
118
 
119
  ##9. Results:
120
 
@@ -126,16 +124,16 @@ Provides a simple web interface for uploading noisy images and visualizing denoi
126
 
127
  ##10. References
128
 
129
- [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
130
- [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](https://arxiv.org/pdf/1802.06955)
131
- [Layer Normalization](https://arxiv.org/abs/1607.06450)
132
- [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521)
133
- [Attention-based UNet enabled Lightweight Image Semantic Communication System over Internet of Things](https://arxiv.org/html/2401.07329v1)
134
- [Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks](https://www.mdpi.com/2078-2489/15/12/788)
135
 
136
  ##11. Author
137
 
138
  Rajeev Ahirwar
139
 
140
- [Linkedin](https://www.linkedin.com/in/86thrajeev/)
141
  [GitHub](https://github.com/Rajeev-86)
 
31
 
32
  ##2. Few Results
33
 
34
+ ![Showcasing few test results](images/test-collage.png)
35
 
36
  ##3. Project Structure
37
 
38
+ β”œβ”€β”€ .gitignore \
39
+ β”œβ”€β”€ .github/workflows \
40
+ β”‚ β”œβ”€β”€ sync_to_hf.yml \
41
+ β”œβ”€β”€ Dockerfile \
42
  β”œβ”€β”€ api-test.py
43
+ β”œβ”€β”€ handler.py \
44
+ β”œβ”€β”€ requirements.txt \
45
+ β”œβ”€β”€ images \
46
+ └── README.md
47
+
48
+ - [Dataset Preparation](https://drive.google.com/file/d/1hY0OBv0TI8dsP5Y2Le6IT9kFwPM_t8_V/view?usp=sharing)
49
+ - [UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-for-image-denoising)
50
+ - [Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-residual-unet-for-image-denoising)
51
+ - [CBAM-Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-with-residuals-and-cbam-layers)
52
+ - [TorchScript_comparison](https://drive.google.com/file/d/1JC6WIi59fppT78v5kl26VSD4tX73ikgg/view?usp=sharing)
53
+ [- Model Archiving](https://drive.google.com/file/d/1X4lMJYiC8ps3170X-Jj5-YvnaIDDvnbx/view?usp=sharing)
 
 
54
 
55
  ##4. Dataset Used
56
 
 
64
 
65
  Due to the complex, non-linear nature of this hybrid noise model, we quantified the overall degradation using the Effective Noise Level (Οƒ eff), defined as the Standard Deviation of the entire noise residual (yβˆ’x) across the validation set. The measured effective noise level for the challenging dataset was Οƒeff =79.32 (scaled to 0-255). All performance metrics (PSNR, SSIM) presented below are reported against this highly degraded baseline.
66
 
67
+ - [Original Berkeley Segmentation Dataset 500 (BSDS500)](https://data.vision.ee.ethz.ch/cvl/DIV2K/) \
68
+ - [GDrive link for our modified Dataset](https://drive.google.com/drive/folders/1AObLCZGTHvtcv-lZFGPBA8k8xgC1k4_w?usp=sharing)
69
 
70
  ##5. Model Architectures
71
 
 
86
  ##7. Optimization
87
  Comparing ordinary serlialization vs TorchScript inference time
88
 
89
+ | Model | Speedup |
90
  | -------------------------| ------------------------ |
91
  | U-Net | 39.18 % |
92
  | Residual U-Net | 43.77 % |
 
100
 
101
  Deployment Platform: Hugging Face Spaces
102
 
103
+ HuggingFace Space link: [here](https://huggingface.co/spaces/Rexy-3d/Denoiser-Server)
104
 
105
+ Artifacts: .mar model files stored [here](https://drive.google.com/drive/folders/1Arnlrjdxqd0zBaIC4ECigDxxSrgqyAHX?usp=sharing)
106
 
107
  ##8. Frontend (Next.js)
108
 
 
112
 
113
  Provides a simple web interface for uploading noisy images and visualizing denoised outputs.
114
 
115
+ Open Web Frontend [here](https://denoiserbyrajeev.vercel.app/)
116
 
117
  ##9. Results:
118
 
 
124
 
125
  ##10. References
126
 
127
+ [1] [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)\
128
+ [2] [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](https://arxiv.org/pdf/1802.06955)\
129
+ [3] [Layer Normalization](https://arxiv.org/abs/1607.06450)\
130
+ [CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521)\
131
+ [4] [Attention-based UNet enabled Lightweight Image Semantic Communication System over Internet of Things](https://arxiv.org/html/2401.07329v1)\
132
+ [5] [Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks](https://www.mdpi.com/2078-2489/15/12/788)
133
 
134
  ##11. Author
135
 
136
  Rajeev Ahirwar
137
 
138
+ [Linkedin](https://www.linkedin.com/in/86thrajeev/)\
139
  [GitHub](https://github.com/Rajeev-86)