Spaces:
Sleeping
Sleeping
Rajeev-86
commited on
Commit
Β·
7da107e
1
Parent(s):
370e492
Fixed README.md formatting
Browse files
README.md
CHANGED
|
@@ -31,28 +31,26 @@ The objective of this project is to develop and evaluate a robust image denoisin
|
|
| 31 |
|
| 32 |
##2. Few Results
|
| 33 |
|
| 34 |
-

|
| 55 |
-
[Model Archiving](https://drive.google.com/file/d/1X4lMJYiC8ps3170X-Jj5-YvnaIDDvnbx/view?usp=sharing)
|
| 56 |
|
| 57 |
##4. Dataset Used
|
| 58 |
|
|
@@ -66,8 +64,8 @@ Structured Artifacts: JPEG compression with randomized quality (β[70,95]).
|
|
| 66 |
|
| 67 |
Due to the complex, non-linear nature of this hybrid noise model, we quantified the overall degradation using the Effective Noise Level (Ο eff), defined as the Standard Deviation of the entire noise residual (yβx) across the validation set. The measured effective noise level for the challenging dataset was Οeff =79.32 (scaled to 0-255). All performance metrics (PSNR, SSIM) presented below are reported against this highly degraded baseline.
|
| 68 |
|
| 69 |
-
[Original Berkeley Segmentation Dataset 500 (BSDS500)](https://data.vision.ee.ethz.ch/cvl/DIV2K/)
|
| 70 |
-
[GDrive link for our modified Dataset](https://drive.google.com/drive/folders/1AObLCZGTHvtcv-lZFGPBA8k8xgC1k4_w?usp=sharing)
|
| 71 |
|
| 72 |
##5. Model Architectures
|
| 73 |
|
|
@@ -88,7 +86,7 @@ Due to the complex, non-linear nature of this hybrid noise model, we quantified
|
|
| 88 |
##7. Optimization
|
| 89 |
Comparing ordinary serlialization vs TorchScript inference time
|
| 90 |
|
| 91 |
-
| Model |
|
| 92 |
| -------------------------| ------------------------ |
|
| 93 |
| U-Net | 39.18 % |
|
| 94 |
| Residual U-Net | 43.77 % |
|
|
@@ -102,9 +100,9 @@ Containerization: Docker
|
|
| 102 |
|
| 103 |
Deployment Platform: Hugging Face Spaces
|
| 104 |
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
##8. Frontend (Next.js)
|
| 110 |
|
|
@@ -114,7 +112,7 @@ Platform: Vercel
|
|
| 114 |
|
| 115 |
Provides a simple web interface for uploading noisy images and visualizing denoised outputs.
|
| 116 |
|
| 117 |
-
|
| 118 |
|
| 119 |
##9. Results:
|
| 120 |
|
|
@@ -126,16 +124,16 @@ Provides a simple web interface for uploading noisy images and visualizing denoi
|
|
| 126 |
|
| 127 |
##10. References
|
| 128 |
|
| 129 |
-
[U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
|
| 130 |
-
[Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](https://arxiv.org/pdf/1802.06955)
|
| 131 |
-
[Layer Normalization](https://arxiv.org/abs/1607.06450)
|
| 132 |
-
[CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521)
|
| 133 |
-
[Attention-based UNet enabled Lightweight Image Semantic Communication System over Internet of Things](https://arxiv.org/html/2401.07329v1)
|
| 134 |
-
[Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks](https://www.mdpi.com/2078-2489/15/12/788)
|
| 135 |
|
| 136 |
##11. Author
|
| 137 |
|
| 138 |
Rajeev Ahirwar
|
| 139 |
|
| 140 |
-
[Linkedin](https://www.linkedin.com/in/86thrajeev/)
|
| 141 |
[GitHub](https://github.com/Rajeev-86)
|
|
|
|
| 31 |
|
| 32 |
##2. Few Results
|
| 33 |
|
| 34 |
+

|
| 35 |
|
| 36 |
##3. Project Structure
|
| 37 |
|
| 38 |
+
βββ .gitignore \
|
| 39 |
+
βββ .github/workflows \
|
| 40 |
+
β βββ sync_to_hf.yml \
|
| 41 |
+
βββ Dockerfile \
|
| 42 |
βββ api-test.py
|
| 43 |
+
βββ handler.py \
|
| 44 |
+
βββ requirements.txt \
|
| 45 |
+
βββ images \
|
| 46 |
+
βββ README.md
|
| 47 |
+
|
| 48 |
+
- [Dataset Preparation](https://drive.google.com/file/d/1hY0OBv0TI8dsP5Y2Le6IT9kFwPM_t8_V/view?usp=sharing)
|
| 49 |
+
- [UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-for-image-denoising)
|
| 50 |
+
- [Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-residual-unet-for-image-denoising)
|
| 51 |
+
- [CBAM-Residual-UNET_training](https://www.kaggle.com/code/rajeev86/training-unet-with-residuals-and-cbam-layers)
|
| 52 |
+
- [TorchScript_comparison](https://drive.google.com/file/d/1JC6WIi59fppT78v5kl26VSD4tX73ikgg/view?usp=sharing)
|
| 53 |
+
[- Model Archiving](https://drive.google.com/file/d/1X4lMJYiC8ps3170X-Jj5-YvnaIDDvnbx/view?usp=sharing)
|
|
|
|
|
|
|
| 54 |
|
| 55 |
##4. Dataset Used
|
| 56 |
|
|
|
|
| 64 |
|
| 65 |
Due to the complex, non-linear nature of this hybrid noise model, we quantified the overall degradation using the Effective Noise Level (Ο eff), defined as the Standard Deviation of the entire noise residual (yβx) across the validation set. The measured effective noise level for the challenging dataset was Οeff =79.32 (scaled to 0-255). All performance metrics (PSNR, SSIM) presented below are reported against this highly degraded baseline.
|
| 66 |
|
| 67 |
+
- [Original Berkeley Segmentation Dataset 500 (BSDS500)](https://data.vision.ee.ethz.ch/cvl/DIV2K/) \
|
| 68 |
+
- [GDrive link for our modified Dataset](https://drive.google.com/drive/folders/1AObLCZGTHvtcv-lZFGPBA8k8xgC1k4_w?usp=sharing)
|
| 69 |
|
| 70 |
##5. Model Architectures
|
| 71 |
|
|
|
|
| 86 |
##7. Optimization
|
| 87 |
Comparing ordinary serlialization vs TorchScript inference time
|
| 88 |
|
| 89 |
+
| Model | Speedup |
|
| 90 |
| -------------------------| ------------------------ |
|
| 91 |
| U-Net | 39.18 % |
|
| 92 |
| Residual U-Net | 43.77 % |
|
|
|
|
| 100 |
|
| 101 |
Deployment Platform: Hugging Face Spaces
|
| 102 |
|
| 103 |
+
HuggingFace Space link: [here](https://huggingface.co/spaces/Rexy-3d/Denoiser-Server)
|
| 104 |
|
| 105 |
+
Artifacts: .mar model files stored [here](https://drive.google.com/drive/folders/1Arnlrjdxqd0zBaIC4ECigDxxSrgqyAHX?usp=sharing)
|
| 106 |
|
| 107 |
##8. Frontend (Next.js)
|
| 108 |
|
|
|
|
| 112 |
|
| 113 |
Provides a simple web interface for uploading noisy images and visualizing denoised outputs.
|
| 114 |
|
| 115 |
+
Open Web Frontend [here](https://denoiserbyrajeev.vercel.app/)
|
| 116 |
|
| 117 |
##9. Results:
|
| 118 |
|
|
|
|
| 124 |
|
| 125 |
##10. References
|
| 126 |
|
| 127 |
+
[1] [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)\
|
| 128 |
+
[2] [Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation](https://arxiv.org/pdf/1802.06955)\
|
| 129 |
+
[3] [Layer Normalization](https://arxiv.org/abs/1607.06450)\
|
| 130 |
+
[CBAM: Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521)\
|
| 131 |
+
[4] [Attention-based UNet enabled Lightweight Image Semantic Communication System over Internet of Things](https://arxiv.org/html/2401.07329v1)\
|
| 132 |
+
[5] [Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks](https://www.mdpi.com/2078-2489/15/12/788)
|
| 133 |
|
| 134 |
##11. Author
|
| 135 |
|
| 136 |
Rajeev Ahirwar
|
| 137 |
|
| 138 |
+
[Linkedin](https://www.linkedin.com/in/86thrajeev/)\
|
| 139 |
[GitHub](https://github.com/Rajeev-86)
|