Spaces:
Running
Running
| import cv2 | |
| import base64 | |
| import requests | |
| import numpy as np | |
| META_PROMPT = ''' | |
| For any labels or markings on an image that you reference in your response, please | |
| enclose them in square brackets ([]) and list them explicitly. Do not use ranges; for | |
| example, instead of '1 - 4', list as '[1], [2], [3], [4]'. These labels could be | |
| numbers or letters and typically correspond to specific segments or parts of the image. | |
| ''' | |
| API_URL = "https://api.openai.com/v1/chat/completions" | |
| def encode_image_to_base64(image: np.ndarray) -> str: | |
| """ | |
| Encodes an image into a base64-encoded string in JPEG format. | |
| Parameters: | |
| image (np.ndarray): The image to be encoded. This should be a numpy array as | |
| typically used in OpenCV. | |
| Returns: | |
| str: A base64-encoded string representing the image in JPEG format. | |
| """ | |
| success, buffer = cv2.imencode('.jpg', image) | |
| if not success: | |
| raise ValueError("Could not encode image to JPEG format.") | |
| encoded_image = base64.b64encode(buffer).decode('utf-8') | |
| return encoded_image | |
| def compose_headers(api_key: str) -> dict: | |
| return { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {api_key}" | |
| } | |
| def compose_payload(image: np.ndarray, prompt: str) -> dict: | |
| base64_image = encode_image_to_base64(image) | |
| return { | |
| "model": "gpt-4-vision-preview", | |
| "messages": [ | |
| { | |
| "role": "system", | |
| "content": [ | |
| META_PROMPT | |
| ] | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": prompt | |
| }, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{base64_image}" | |
| } | |
| } | |
| ] | |
| } | |
| ], | |
| "max_tokens": 800 | |
| } | |
| def prompt_image(api_key: str, image: np.ndarray, prompt: str) -> str: | |
| headers = compose_headers(api_key=api_key) | |
| payload = compose_payload(image=image, prompt=prompt) | |
| response = requests.post(url=API_URL, headers=headers, json=payload).json() | |
| if 'error' in response: | |
| raise ValueError(response['error']['message']) | |
| return response['choices'][0]['message']['content'] | |