|
|
from typing import Optional |
|
|
|
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
def show_masks( |
|
|
image: np.ndarray, |
|
|
masks: np.ndarray, |
|
|
scores: Optional[np.ndarray], |
|
|
alpha: Optional[float] = 0.5, |
|
|
display_image: Optional[bool] = False, |
|
|
only_best: Optional[bool] = True, |
|
|
autogenerated_mask: Optional[bool] = False, |
|
|
) -> Image.Image: |
|
|
if scores is not None: |
|
|
|
|
|
sorted_ind = np.argsort(scores)[::-1] |
|
|
masks = masks[sorted_ind] |
|
|
|
|
|
if autogenerated_mask: |
|
|
masks = sorted(masks, key=(lambda x: x["area"]), reverse=True) |
|
|
else: |
|
|
|
|
|
h, w = masks.shape[-2:] |
|
|
|
|
|
if display_image: |
|
|
output_image = Image.fromarray(image) |
|
|
else: |
|
|
|
|
|
if autogenerated_mask: |
|
|
output_image = Image.new( |
|
|
mode="RGBA", |
|
|
size=( |
|
|
masks[0]["segmentation"].shape[1], |
|
|
masks[0]["segmentation"].shape[0], |
|
|
), |
|
|
color=(0, 0, 0), |
|
|
) |
|
|
else: |
|
|
output_image = Image.new(mode="RGBA", size=(w, h), color=(0, 0, 0)) |
|
|
|
|
|
for i, mask in enumerate(masks): |
|
|
if not autogenerated_mask: |
|
|
if mask.ndim > 2: |
|
|
mask = mask.squeeze() |
|
|
else: |
|
|
mask = mask["segmentation"] |
|
|
|
|
|
color = np.concatenate( |
|
|
(np.random.randint(0, 256, size=3), [int(alpha * 255)]), axis=0 |
|
|
) |
|
|
|
|
|
|
|
|
mask_image = Image.fromarray((mask * 255).astype(np.uint8)).convert("L") |
|
|
mask_colored = Image.new("RGBA", mask_image.size, tuple(color)) |
|
|
mask_image = Image.composite( |
|
|
mask_colored, Image.new("RGBA", mask_image.size), mask_image |
|
|
) |
|
|
|
|
|
|
|
|
output_image = Image.alpha_composite(output_image, mask_image) |
|
|
|
|
|
|
|
|
if only_best: |
|
|
break |
|
|
|
|
|
return output_image |
|
|
|