Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import random
|
| 4 |
+
from datasets import load_dataset, Dataset
|
| 5 |
+
from typing import Dict, List
|
| 6 |
+
import re
|
| 7 |
+
import datetime
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import os
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
def sanitize_theme_name(theme: str) -> str:
|
| 15 |
+
sanitized = re.sub(r'[^\w\s-]', '', theme)
|
| 16 |
+
sanitized = re.sub(r'[-\s]+', '_', sanitized)
|
| 17 |
+
return sanitized.lower().strip('_')
|
| 18 |
+
|
| 19 |
+
def load_questions_from_dataset() -> Dict[str, List[Dict]]:
|
| 20 |
+
dataset = load_dataset("SASLeaderboard/sas_opposition_exam_data")
|
| 21 |
+
dataset = dataset['train'].filter(lambda x: x['theme'] == 'FEA UrologΓa')
|
| 22 |
+
|
| 23 |
+
questions_by_theme = {}
|
| 24 |
+
skipped = 0
|
| 25 |
+
loaded = 0
|
| 26 |
+
|
| 27 |
+
for item in dataset:
|
| 28 |
+
theme = item['theme']
|
| 29 |
+
answers = item.get('answers', [])
|
| 30 |
+
correct_answer = item.get('correct_answer', '')
|
| 31 |
+
|
| 32 |
+
if not answers or not correct_answer or len(answers) < 3:
|
| 33 |
+
skipped += 1
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
while len(answers) < 4:
|
| 37 |
+
answers.append(answers[-1])
|
| 38 |
+
|
| 39 |
+
sanitized_theme = sanitize_theme_name(theme)
|
| 40 |
+
|
| 41 |
+
if sanitized_theme not in questions_by_theme:
|
| 42 |
+
questions_by_theme[sanitized_theme] = []
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
question = {
|
| 46 |
+
"statement": item['statement'],
|
| 47 |
+
"options": {
|
| 48 |
+
"A": answers[0],
|
| 49 |
+
"B": answers[1],
|
| 50 |
+
"C": answers[2],
|
| 51 |
+
"D": answers[3]
|
| 52 |
+
},
|
| 53 |
+
"real_answer": correct_answer,
|
| 54 |
+
"theme": theme,
|
| 55 |
+
"sanitized_theme": sanitized_theme,
|
| 56 |
+
"version": item.get('version', 'Default')
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
questions_by_theme[sanitized_theme].append(question)
|
| 60 |
+
loaded += 1
|
| 61 |
+
except Exception as e:
|
| 62 |
+
skipped += 1
|
| 63 |
+
continue
|
| 64 |
+
|
| 65 |
+
print(f"Loaded {loaded} questions, skipped {skipped} invalid questions")
|
| 66 |
+
return questions_by_theme
|
| 67 |
+
|
| 68 |
+
def ask_ai_model(api_key: str, model: str, question: Dict) -> tuple:
|
| 69 |
+
prompt = f"""You are a medical expert taking a urology examination. Please analyze this question carefully and provide your answer.
|
| 70 |
+
|
| 71 |
+
Question: {question['statement']}
|
| 72 |
+
|
| 73 |
+
Options:
|
| 74 |
+
A) {question['options']['A']}
|
| 75 |
+
B) {question['options']['B']}
|
| 76 |
+
C) {question['options']['C']}
|
| 77 |
+
D) {question['options']['D']}
|
| 78 |
+
|
| 79 |
+
Please provide your answer in this exact format:
|
| 80 |
+
Answer: [A/B/C/D]
|
| 81 |
+
|
| 82 |
+
Then provide your reasoning."""
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
headers = {
|
| 86 |
+
"Authorization": f"Bearer {api_key}",
|
| 87 |
+
"Content-Type": "application/json"
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
data = {
|
| 91 |
+
"model": model,
|
| 92 |
+
"messages": [
|
| 93 |
+
{"role": "user", "content": prompt}
|
| 94 |
+
]
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
response = requests.post("https://openrouter.ai/api/v1/chat/completions",
|
| 98 |
+
headers=headers, json=data)
|
| 99 |
+
|
| 100 |
+
if response.status_code == 200:
|
| 101 |
+
result = response.json()
|
| 102 |
+
ai_response = result["choices"][0]["message"]["content"]
|
| 103 |
+
|
| 104 |
+
ai_answer = extract_answer_from_response(ai_response)
|
| 105 |
+
|
| 106 |
+
return ai_response, ai_answer
|
| 107 |
+
else:
|
| 108 |
+
error_msg = f"API Error {response.status_code}: {response.text}"
|
| 109 |
+
return error_msg, "API_ERROR"
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
error_msg = f"Request Error: {str(e)}"
|
| 113 |
+
return error_msg, "REQUEST_ERROR"
|
| 114 |
+
|
| 115 |
+
def extract_answer_from_response(ai_response: str) -> str:
|
| 116 |
+
if not ai_response:
|
| 117 |
+
return "EMPTY_RESPONSE"
|
| 118 |
+
|
| 119 |
+
lines = ai_response.split('\n')
|
| 120 |
+
|
| 121 |
+
for line in lines:
|
| 122 |
+
line_clean = line.strip().lower()
|
| 123 |
+
if line_clean.startswith('answer:'):
|
| 124 |
+
answer_part = line.split(':')[1].strip().upper()
|
| 125 |
+
for char in answer_part:
|
| 126 |
+
if char in ['A', 'B', 'C', 'D']:
|
| 127 |
+
return char
|
| 128 |
+
|
| 129 |
+
for line in lines:
|
| 130 |
+
line_clean = line.strip().lower()
|
| 131 |
+
if 'answer is' in line_clean:
|
| 132 |
+
for char in ['A', 'B', 'C', 'D']:
|
| 133 |
+
if char.lower() in line_clean.split('answer is')[1][:5]:
|
| 134 |
+
return char
|
| 135 |
+
|
| 136 |
+
for line in lines[:5]:
|
| 137 |
+
line_upper = line.upper()
|
| 138 |
+
for char in ['A', 'B', 'C', 'D']:
|
| 139 |
+
patterns = [f"{char})", f"{char}.", f"OPTION {char}", f"({char})", f"CHOICE {char}"]
|
| 140 |
+
for pattern in patterns:
|
| 141 |
+
if pattern in line_upper:
|
| 142 |
+
return char
|
| 143 |
+
|
| 144 |
+
for line in lines[:3]:
|
| 145 |
+
for char in ['A', 'B', 'C', 'D']:
|
| 146 |
+
if char in line.upper():
|
| 147 |
+
return char
|
| 148 |
+
|
| 149 |
+
for char in ['A', 'B', 'C', 'D']:
|
| 150 |
+
if char in ai_response.upper():
|
| 151 |
+
return char
|
| 152 |
+
|
| 153 |
+
return "NO_ANSWER_FOUND"
|
| 154 |
+
|
| 155 |
+
def save_results_to_dataset(results: List[Dict], hf_token: str = None) -> str:
|
| 156 |
+
if not results:
|
| 157 |
+
return "No results to save"
|
| 158 |
+
|
| 159 |
+
if not hf_token:
|
| 160 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 161 |
+
|
| 162 |
+
if not hf_token:
|
| 163 |
+
return "β HuggingFace token not found. Please provide it in the interface or set HF_TOKEN environment variable"
|
| 164 |
+
|
| 165 |
+
try:
|
| 166 |
+
try:
|
| 167 |
+
existing_dataset = load_dataset("SASLeaderboard/results", use_auth_token=hf_token)
|
| 168 |
+
existing_data = existing_dataset['train'].to_pandas()
|
| 169 |
+
except Exception:
|
| 170 |
+
existing_data = None
|
| 171 |
+
|
| 172 |
+
new_data = pd.DataFrame(results)
|
| 173 |
+
|
| 174 |
+
if existing_data is not None:
|
| 175 |
+
combined_data = pd.concat([existing_data, new_data], ignore_index=True)
|
| 176 |
+
else:
|
| 177 |
+
combined_data = new_data
|
| 178 |
+
|
| 179 |
+
new_dataset = Dataset.from_pandas(combined_data)
|
| 180 |
+
|
| 181 |
+
new_dataset.push_to_hub(
|
| 182 |
+
"SASLeaderboard/results",
|
| 183 |
+
token=hf_token,
|
| 184 |
+
commit_message=f"Automated exam results for {results[0]['model']} - {len(results)} questions"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return f"β
Successfully saved {len(results)} results to SASLeaderboard/results dataset"
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
return f"β Error saving results: {str(e)}"
|
| 191 |
+
|
| 192 |
+
def run_automated_exam(api_key: str, model: str, hf_token: str = ""):
|
| 193 |
+
if not api_key:
|
| 194 |
+
yield "β Please provide OpenRouter API key"
|
| 195 |
+
return
|
| 196 |
+
|
| 197 |
+
if not model:
|
| 198 |
+
yield "β Please provide model name"
|
| 199 |
+
return
|
| 200 |
+
|
| 201 |
+
yield "π Loading questions from dataset..."
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
all_questions_by_theme = load_questions_from_dataset()
|
| 205 |
+
|
| 206 |
+
all_questions = []
|
| 207 |
+
for theme_questions in all_questions_by_theme.values():
|
| 208 |
+
all_questions.extend(theme_questions)
|
| 209 |
+
|
| 210 |
+
total_questions = len(all_questions)
|
| 211 |
+
|
| 212 |
+
yield f"β
Loaded {total_questions} questions from dataset"
|
| 213 |
+
yield f"π Starting automated exam with ALL {total_questions} questions for model: {model}"
|
| 214 |
+
|
| 215 |
+
session_id = f"{model}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 216 |
+
results = []
|
| 217 |
+
correct_count = 0
|
| 218 |
+
|
| 219 |
+
for i, question in enumerate(all_questions):
|
| 220 |
+
|
| 221 |
+
ai_response, ai_answer = ask_ai_model(api_key, model, question)
|
| 222 |
+
|
| 223 |
+
if ai_answer in ["API_ERROR", "REQUEST_ERROR", "EMPTY_RESPONSE", "NO_ANSWER_FOUND"]:
|
| 224 |
+
yield f"β οΈ Question {i+1}: Error getting answer - {ai_answer}. Response: {ai_response[:100]}..."
|
| 225 |
+
|
| 226 |
+
is_correct = ai_answer == question['real_answer']
|
| 227 |
+
if is_correct:
|
| 228 |
+
correct_count += 1
|
| 229 |
+
|
| 230 |
+
result = {
|
| 231 |
+
"session_id": session_id,
|
| 232 |
+
"model": model,
|
| 233 |
+
"question": question['statement'],
|
| 234 |
+
"theme": question['theme'],
|
| 235 |
+
"correct_answer": question['real_answer'],
|
| 236 |
+
"ai_answer": ai_answer,
|
| 237 |
+
"ai_response": ai_response,
|
| 238 |
+
"is_correct": is_correct,
|
| 239 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
| 240 |
+
"options_a": question['options']['A'],
|
| 241 |
+
"options_b": question['options']['B'],
|
| 242 |
+
"options_c": question['options']['C'],
|
| 243 |
+
"options_d": question['options']['D']
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
results.append(result)
|
| 247 |
+
|
| 248 |
+
current_accuracy = (correct_count / (i + 1)) * 100
|
| 249 |
+
|
| 250 |
+
status_emoji = "β
" if is_correct else "β"
|
| 251 |
+
yield f"{status_emoji} Q{i+1}/{total_questions}: Accuracy: {correct_count}/{i+1} ({current_accuracy:.1f}%) | AI: {ai_answer} vs Correct: {question['real_answer']} | {question['statement'][:80]}..."
|
| 252 |
+
|
| 253 |
+
yield f"πΎ Saving results to HuggingFace dataset..."
|
| 254 |
+
|
| 255 |
+
save_result = save_results_to_dataset(results, hf_token)
|
| 256 |
+
|
| 257 |
+
final_accuracy = (correct_count / len(results)) * 100
|
| 258 |
+
yield f"""
|
| 259 |
+
## π― Exam Complete!
|
| 260 |
+
|
| 261 |
+
**Final Results:**
|
| 262 |
+
- Model: {model}
|
| 263 |
+
- Total Questions: {len(results)}
|
| 264 |
+
- Correct Answers: {correct_count}
|
| 265 |
+
- Final Accuracy: {final_accuracy:.1f}%
|
| 266 |
+
- Session ID: {session_id}
|
| 267 |
+
|
| 268 |
+
**Save Status:** {save_result}
|
| 269 |
+
|
| 270 |
+
The automated exam has been completed successfully!
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
except Exception as e:
|
| 274 |
+
yield f"β Error during automated exam: {str(e)}"
|
| 275 |
+
|
| 276 |
+
with gr.Blocks(title="Automated Urology Exam System") as demo:
|
| 277 |
+
gr.Markdown("# Automated Urology Exam System")
|
| 278 |
+
gr.Markdown("This system automatically runs a complete urology exam for AI models using ALL available questions (~150) and saves results to the dataset.")
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
with gr.Column():
|
| 282 |
+
gr.Markdown("**Get your API key:** [OpenRouter Keys](https://openrouter.ai/settings/keys)")
|
| 283 |
+
api_key_input = gr.Textbox(
|
| 284 |
+
label="OpenRouter API Key",
|
| 285 |
+
type="password",
|
| 286 |
+
placeholder="Enter your OpenRouter API key"
|
| 287 |
+
)
|
| 288 |
+
with gr.Column():
|
| 289 |
+
gr.Markdown("**Find models:** [OpenRouter Models](https://openrouter.ai/models)")
|
| 290 |
+
model_input = gr.Textbox(
|
| 291 |
+
label="Model Name",
|
| 292 |
+
placeholder="e.g., anthropic/claude-3-sonnet",
|
| 293 |
+
value="anthropic/claude-3-sonnet"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
with gr.Row():
|
| 297 |
+
start_exam_btn = gr.Button("Start Automated Exam", variant="primary", size="lg")
|
| 298 |
+
|
| 299 |
+
with gr.Row():
|
| 300 |
+
progress_output = gr.Textbox(
|
| 301 |
+
label="Exam Progress - Dont close this window",
|
| 302 |
+
placeholder="Exam progress will be displayed here...",
|
| 303 |
+
lines=15,
|
| 304 |
+
max_lines=20,
|
| 305 |
+
interactive=False
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
start_exam_btn.click(
|
| 309 |
+
run_automated_exam,
|
| 310 |
+
inputs=[api_key_input, model_input],
|
| 311 |
+
outputs=[progress_output]
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
if __name__ == "__main__":
|
| 315 |
+
demo.launch()
|