Spaces:
Running
Running
File size: 37,502 Bytes
8a254d6 289ccbe 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 a452b10 8a254d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.graph_objs._figure import Figure
from typing import Optional, List, Dict, Any
from src.display.formatting import get_display_model_name
SORT_COLUMN_MAP = {
"Average Accuracy": "Avg AC",
"Tool Selection Quality": "Avg TSQ",
"Session Cost": "Avg Total Cost"
}
def get_theme_colors(theme: str = "light") -> Dict[str, Any]:
"""Return color settings for the given theme."""
if theme == "dark":
return {
"paper_bg": "#181c3a", # darker blue-gray
"plot_bg": "#181c3a",
"legend_font_color": "#F5F6F7",
"legend_bg": 'rgba(35,36,74,0.92)', # slightly lighter than bg, but still dark
"annotation_color": '#F5F6F7'
}
else:
return {
"paper_bg": "#23244a", # deep blue-gray
"plot_bg": "#23244a",
"legend_font_color": "#F5F6F7",
"legend_bg": 'rgba(35,36,74,0.92)', # match bg for harmony
"annotation_color": '#F5F6F7'
}
def create_empty_radar_chart(message: str) -> Figure:
"""Create an empty radar chart with a message."""
fig = go.Figure()
fig.add_annotation(
text=f"π {message}",
xref="paper", yref="paper",
x=0.5, y=0.5,
xanchor='center', yanchor='middle',
font=dict(
size=18,
color="#94A3B8",
family="Verdana, sans-serif"
),
showarrow=False,
bgcolor="rgba(245, 246, 247, 0.05)",
bordercolor="rgba(245, 246, 247, 0.2)",
borderwidth=1,
borderpad=20
)
fig.update_layout(
paper_bgcolor="#01091A",
plot_bgcolor="rgba(245, 246, 247, 0.02)",
height=800,
width=800,
margin=dict(t=100, b=80, l=80, r=80),
title=dict(
text="<b>Domain Performance Chart</b>",
x=0.5,
y=0.97,
font=dict(
size=22,
family="Verdana, sans-serif",
color="#F5F6F7",
weight=700
),
),
annotations=[
dict(
text="TRUEBench",
xref="paper", yref="paper",
x=0.98, y=0.02,
xanchor='right', yanchor='bottom',
font=dict(size=10, color='#64748B'),
showarrow=False
)
]
)
return fig
def create_len_overall_scatter(
df: pd.DataFrame,
selected_models: Optional[List[str]] = None,
max_models: int = 50,
y_col: str = "Overall",
length_data: Optional[dict] = None,
theme: str = "light",
x_axis_data_source: str = "Median Length",
mode: str = "open"
) -> Figure:
"""
Create scatter plot showing Med. Len. vs selected y_col for up to 10 selected models.
Each dot is colored by Think (normal/reasoning), and the legend is by Think.
DataFrame must include an 'Think' column.
length_data: JSON data containing model length information by category
theme: "light" or "dark" (default: "light")
"""
import plotly.express as px
import json
x_axis_data_source = "Med. Len." if x_axis_data_source == "Median Length" else "Med. Resp. Len."
# Defensive: check required columns
required_cols = ['Model Name', 'Med. Len.', 'Med. Resp. Len.', y_col]
for col in required_cols:
if col not in df.columns:
return create_empty_radar_chart(f"Column '{col}' not found in data")
# Think column check
think_col = None
for candidate in ['Think']:
if candidate in df.columns:
think_col = candidate
break
if think_col is None:
return create_empty_radar_chart("Column 'Think' not found in data")
# Filter by selected_models
if selected_models is not None and len(selected_models) > 0:
df_filtered = df[df['Model Name'].isin(selected_models)].copy()
else:
# Default: top-N by Overall
df_filtered = df.copy()
df_filtered = df_filtered.sort_values('Overall', ascending=False).head(max_models)
if df_filtered.empty:
return create_empty_radar_chart(f"No data available for {x_axis_data_source} vs {y_col} analysis")
# Determine x-axis data based on x_axis_data_source
x_axis_col_name = x_axis_data_source # Use this for the DataFrame column
length_data_key = 'Med' if x_axis_data_source == "Med. Len." else 'Med Resp'
if y_col == "Overall":
# For 'Overall' category, prefer direct DataFrame column reading
df_filtered[x_axis_col_name] = pd.to_numeric(df_filtered[x_axis_col_name], errors='coerce')
elif length_data:
# For other categories, use length_data if available
df_filtered[x_axis_col_name] = df_filtered['Model Name'].apply(
lambda x: length_data.get(x, {}).get(y_col, {}).get(length_data_key, 0)
)
else:
# Fallback if no length_data and not 'Overall' (though this case should ideally be handled by required_cols)
df_filtered[x_axis_col_name] = pd.to_numeric(df_filtered[x_axis_col_name], errors='coerce')
df_filtered[y_col] = pd.to_numeric(df_filtered[y_col], errors='coerce')
if 'Type' in df_filtered.columns:
df_filtered = df_filtered[df_filtered['Type'] != 'Proprietary']
legend_name_map = {
'On': 'Thinking',
'Off': 'Non-Thinking'
}
df_filtered['ThinkDisplay'] = df_filtered['Think'].map(legend_name_map).fillna(df_filtered['Think'])
df_filtered['MarkerType'] = df_filtered['ThinkDisplay'].map({'Thinking': 'circle', 'Non-Thinking': 'square'}).fillna('circle')
import numpy as np
param_size = pd.to_numeric(df_filtered['Parameter Size (B)'], errors='coerce')
log_param = np.log10(param_size.clip(lower=1))
log_param = log_param.fillna(0)
norm = (log_param - 0) / (3 - 0)
# blue (#00BFFF) ~ orange (#FF8800) linear interpolation
def lerp_color(c1, c2, t):
c1 = np.array([int(c1[i:i+2], 16) for i in (1, 3, 5)])
c2 = np.array([int(c2[i:i+2], 16) for i in (1, 3, 5)])
rgb = (1-t) * c1 + t * c2
return f'#{int(rgb[0]):02X}{int(rgb[1]):02X}{int(rgb[2]):02X}'
color_list = [lerp_color('#00BFFF', '#FF8800', t) for t in norm]
df_filtered['Color'] = color_list
fig = go.Figure()
median_x = df_filtered[x_axis_col_name].median()
median_y = df_filtered[y_col].median()
x_axis_display_name = x_axis_data_source.replace("Med.", "Median").replace("Len.", "Length")
fig.add_vline(
x=median_x,
line_dash="dash",
line_color="#64748B",
opacity=0.6,
line_width=1.5,
annotation_text=f"{x_axis_display_name}",
annotation_position="top right",
annotation_font=dict(size=10, color="#64748B")
)
fig.add_hline(
y=median_y,
line_dash="dash",
line_color="#64748B",
opacity=0.6,
line_width=1.5,
annotation_text=f"Median {y_col}",
annotation_position="bottom right",
annotation_font=dict(size=10, color="#64748B")
)
for think, marker_type in [('Thinking', 'circle'), ('Non-Thinking', 'square')]:
sub_df = df_filtered[df_filtered['ThinkDisplay'] == think]
if sub_df.empty:
continue
marker_size = 25 if marker_type == 'square' else 30
fig.add_trace(go.Scatter(
x=sub_df[x_axis_col_name],
y=sub_df[y_col],
mode='markers+text',
name=think,
legendgroup=think,
showlegend=True,
marker_symbol=marker_type,
marker=dict(
size=marker_size,
color=sub_df['Color'],
opacity=0.85,
line=dict(width=2, color='#01091A')
),
text=sub_df['Model Name'].apply(get_display_model_name),
textposition="top center",
textfont=dict(size=10, color='#94A3B8'),
hovertemplate="<b>%{text}</b><br>" +
x_axis_display_name + ": %{x:.2f}<br>" +
y_col + ": %{y:.2f}<br>" +
"Think: " + think + "<br>" +
"Parameter Size: %{customdata}B<br>" +
"<extra></extra>",
customdata=sub_df['Parameter Size (B)'].values
))
# colorbarλ log10(Parameter Size (B)) 0~3, tickvals=[0,1,2,3], ticktext=['1','10','100','1000']
import plotly.colors
theme_colors = get_theme_colors(theme)
colorbar_trace = go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(
size=0.1,
color=[0, 1, 2, 3],
colorscale=[[0, '#00BFFF'], [1, '#FF8800']],
cmin=0, cmax=3,
colorbar=dict(
title={
'text': 'Parameter Size (B)',
'font': dict(
color=theme_colors["legend_font_color"],
family="Verdana, sans-serif",
size=14
)
},
tickvals=[0, 1, 2, 3],
ticktext=['1', '10', '100', '1000'],
tickfont=dict(
color=theme_colors["legend_font_color"],
family="Verdana, sans-serif",
size=12
),
lenmode='pixels',
len=500,
thickness=36,
x=1.02,
y=0.5,
yanchor='middle'
),
showscale=True
),
showlegend=False,
hoverinfo='none'
)
fig.add_trace(colorbar_trace)
# Theme colors
theme_colors = get_theme_colors(theme)
fig.update_layout(
title=dict(
text=f"<b>{y_col} {x_axis_display_name} and Category Score</b>",
x=0.5,
y=0.97,
font=dict(size=22, family="Verdana, sans-serif", color=theme_colors["legend_font_color"], weight=700)
),
xaxis=dict(
title=dict(
text=f"<b>{y_col} {x_axis_display_name}</b>",
font=dict(size=16, color=theme_colors["legend_font_color"])
),
tickfont=dict(size=12, color="#94A3B8"),
gridcolor="rgba(245, 246, 247, 0.1)",
zerolinecolor="rgba(245, 246, 247, 0.2)"
),
yaxis=dict(
title=dict(
text=f"<b>{y_col} Score</b>",
font=dict(size=16, color=theme_colors["legend_font_color"])
),
tickfont=dict(size=12, color="#94A3B8"),
gridcolor="rgba(245, 246, 247, 0.1)",
zerolinecolor="rgba(245, 246, 247, 0.2)"
),
paper_bgcolor=theme_colors["paper_bg"],
plot_bgcolor=theme_colors["plot_bg"],
height=900,
width=1450,
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1,
xanchor="center",
x=0.5,
font=dict(size=12, family="Verdana, sans-serif", color=theme_colors["legend_font_color"]),
bgcolor=theme_colors["legend_bg"],
bordercolor='rgba(245, 246, 247, 0.2)',
borderwidth=1
),
margin=dict(t=100, b=80, l=80, r=80)
)
return fig
def create_language_radar_chart(
df: pd.DataFrame,
metric_type: str,
selected_models: Optional[List[str]] = None,
max_models: int = 5,
theme: str = "light",
mode: str = "open"
) -> Figure:
"""
Create a radar chart showing model performance across languages for the selected models.
theme: "light" or "dark" (default: "light")
"""
language_domains = ['KO', 'EN', 'JA', 'ZH', 'PL', 'DE', 'PT', 'ES', 'FR', 'IT', 'RU', 'VI']
if selected_models is None or len(selected_models) == 0:
actual_metric_type = SORT_COLUMN_MAP.get(metric_type, metric_type)
if actual_metric_type in df.columns:
selected_models = df.nlargest(max_models, actual_metric_type)['Model Name'].tolist()
else:
selected_models = df.head(max_models)['Model Name'].tolist()
selected_models = selected_models[:max_models]
harmonious_palette_light = [
{'fill': 'rgba(79,143,198,0.25)', 'line': '#4F8FC6', 'name': 'BlueGray'},
{'fill': 'rgba(109,213,237,0.25)', 'line': '#6DD5ED', 'name': 'SkyBlue'},
{'fill': 'rgba(162,89,247,0.25)', 'line': '#A259F7', 'name': 'Violet'},
{'fill': 'rgba(67,233,123,0.25)', 'line': '#43E97B', 'name': 'Mint'},
{'fill': 'rgba(255,215,0,0.20)', 'line': '#FFD700', 'name': 'Gold'}
]
harmonious_palette_dark = [
{'fill': 'rgba(144,202,249,0.25)', 'line': '#90CAF9', 'name': 'LightBlue'},
{'fill': 'rgba(128,203,196,0.25)', 'line': '#80CBC4', 'name': 'Mint'},
{'fill': 'rgba(179,157,219,0.25)', 'line': '#B39DDB', 'name': 'Lavender'},
{'fill': 'rgba(244,143,177,0.25)', 'line': '#F48FB1', 'name': 'Pink'},
{'fill': 'rgba(255,213,79,0.20)', 'line': '#FFD54F', 'name': 'Gold'}
]
palette = harmonious_palette_light if theme == "light" else harmonious_palette_dark
fig = go.Figure()
for idx, model_name in enumerate(selected_models):
model_data = df[df['Model Name'] == model_name]
if model_data.empty:
continue
model_row = model_data.iloc[0]
values = []
for lang in language_domains:
val = model_row[lang] if lang in model_row else 0
if pd.isna(val) or val == '':
val = 0
else:
val = float(val)
values.append(val)
values_plot = values + [values[0]]
domains_plot = language_domains + [language_domains[0]]
colors = palette[idx % len(palette)]
fig.add_trace(
go.Scatterpolar(
r=values_plot,
theta=domains_plot,
fill='toself',
fillcolor=colors['fill'],
line=dict(
color=colors['line'],
width=3,
shape='spline',
smoothing=0.5
),
marker=dict(
size=10,
color=colors['line'],
symbol='circle',
line=dict(width=2, color='#01091A' if theme == "light" else '#e3e6f3')
),
name=get_display_model_name(model_name),
mode="lines+markers",
hovertemplate="<b>%{fullData.name}</b><br>" +
"<span style='color: #94A3B8'>%{theta}</span><br>" +
"<b style='font-size: 12px'>%{r:.3f}</b><br>" +
"<extra></extra>",
hoverlabel=dict(
bgcolor="rgba(1, 9, 26, 0.95)" if theme == "dark" else "rgba(227,230,243,0.95)",
bordercolor=colors['line'],
font=dict(color="#F5F6F7" if theme == "dark" else "#23244a", size=12, family="Verdana, sans-serif")
)
)
)
max_range = 100.0
tick_vals = [i * max_range / 5 for i in range(6)]
tick_text = [f"{val:.2f}" for val in tick_vals]
theme_colors = get_theme_colors(theme)
fig.update_layout(
polar=dict(
bgcolor=theme_colors["plot_bg"],
domain=dict(x=[0,1], y=[0,1]),
radialaxis=dict(
visible=True,
range=[0, max_range],
showline=True,
linewidth=2,
linecolor='rgba(245, 246, 247, 0.2)',
gridcolor='rgba(245, 246, 247, 0.1)',
gridwidth=1,
tickvals=tick_vals,
ticktext=tick_text,
tickfont=dict(
size=11,
color='#94A3B8',
family="'Geist Mono', monospace"
),
tickangle=0
),
angularaxis=dict(
showline=True,
linewidth=2,
linecolor='rgba(245, 246, 247, 0.2)',
gridcolor='rgba(245, 246, 247, 0.08)',
tickfont=dict(
size=14,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"],
weight=600
),
ticktext=[
"π Content Gen",
"βοΈ Editing",
"π Data Analysis",
"π§ Reasoning",
"π¦ Hallucination",
"π‘οΈ Safety",
"π Repetition",
"π Summarization",
"π Translation",
"π¬ Multi-Turn"
],
rotation=90,
direction="clockwise",
),
),
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.15,
xanchor="center",
x=0.5,
font=dict(
size=12,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"]
),
bgcolor=theme_colors["legend_bg"],
bordercolor='rgba(245, 246, 247, 0.2)',
borderwidth=1,
itemsizing='constant',
itemwidth=30
),
title=dict(
text=f"<b>Language Performance</b>",
x=0.5,
y=0.97,
font=dict(
size=22,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"],
weight=700
),
),
paper_bgcolor=theme_colors["paper_bg"],
plot_bgcolor=theme_colors["plot_bg"],
height=900,
width=1450,
margin=dict(t=100, b=80, l=80, r=80),
annotations=[
dict(
text="TRUEBench",
xref="paper", yref="paper",
x=0.98, y=0.02,
xanchor='right', yanchor='bottom',
font=dict(size=10, color=theme_colors["annotation_color"]),
showarrow=False
)
]
)
return fig
def load_leaderboard_data(data_prefix: str = "open/") -> pd.DataFrame:
"""Load and prepare the leaderboard data (Category)."""
from src.data_loader import get_category_dataframe
return get_category_dataframe(processed=True, data_prefix=data_prefix)
def load_leaderboard_language_data(data_prefix: str = "open/") -> pd.DataFrame:
"""Load and prepare the leaderboard data (Language)."""
from src.data_loader import get_language_dataframe
return get_language_dataframe(processed=True, data_prefix=data_prefix)
def create_speed_med_bar_plot(
leaderboard_df: pd.DataFrame,
time_data: dict,
min_size: float = 0,
max_size: float = 1000,
min_score: float = 0,
max_score: float = 100,
category: str = "Overall",
theme: str = "light",
x_axis_sort_by: str = "Speed per GPU",
mode: str = "open"
) -> Figure:
"""
Create a bar plot of Speed for the selected category for each model within the selected category's score range.
Bars are sorted by Speed or Overall Score, depending on x_axis_sort_by.
Parameters:
leaderboard_df: DataFrame with model scores (must include "Model Name" and category columns)
time_data: dict with Speed values per model and category
min_size: minimum parameter size for filtering (inclusive)
max_size: maximum parameter size for filtering (inclusive)
min_score: minimum overall score for filtering (inclusive)
max_score: maximum overall score for filtering (inclusive)
category: category to use for both filtering and Speed extraction (e.g., "Overall", "Content Generation", ...)
theme: "light" or "dark"
x_axis_sort_by: "Speed" or "Overall Score" (default: "Speed")
"""
import plotly.graph_objects as go
from src.display.formatting import get_display_model_name
# Defensive: check required columns
if "Model Name" not in leaderboard_df.columns or category not in leaderboard_df.columns:
fig = go.Figure()
fig.add_annotation(
text=f"Leaderboard missing required columns for category '{category}'.",
xref="paper", yref="paper",
x=0.5, y=0.5,
xanchor='center', yanchor='middle',
font=dict(size=18, color="#94A3B8", family="Verdana, sans-serif"),
showarrow=False
)
fig.update_layout(
paper_bgcolor="#01091A",
plot_bgcolor="rgba(245, 246, 247, 0.02)",
height=600,
width=1445,
margin=dict(t=100, b=80, l=80, r=80),
title=dict(
text=f"<b>Speed per GPU Bar Plot</b>",
x=0.5,
y=0.97,
font=dict(size=22, family="Verdana, sans-serif", color="#F5F6F7", weight=700)
)
)
return fig
# Always filter to only "Open" models
leaderboard_df = leaderboard_df.copy()
if "Speed" in leaderboard_df.columns:
leaderboard_df = leaderboard_df[leaderboard_df["Speed"] != ""]
leaderboard_df["Parameter Size (B)"] = pd.to_numeric(leaderboard_df["Parameter Size (B)"], errors="coerce")
leaderboard_df["Overall"] = pd.to_numeric(leaderboard_df["Overall"], errors="coerce")
filtered = leaderboard_df[
(leaderboard_df["Parameter Size (B)"].isnull() | ((leaderboard_df["Parameter Size (B)"] >= min_size) & (leaderboard_df["Parameter Size (B)"] <= max_size))) & (leaderboard_df["Overall"] >= min_score) & (leaderboard_df["Overall"] <= max_score)
].copy()
# Extract Speed Med and Overall for each model for the selected category
speed_meds = []
for _, row in filtered.iterrows():
model = row["Model Name"]
speed_med = None
try:
speed_med = time_data.get(model, {}).get(category, {}).get("Speed", {}).get("Med", None)
except Exception:
speed_med = None
num_gpus = None
try:
num_gpus = time_data.get(model, {}).get("NUM_GPUS", 0)
except Exception:
num_gpus = None
overall_val = None
if "Overall" in leaderboard_df.columns:
try:
overall_val = float(leaderboard_df.loc[leaderboard_df["Model Name"] == model, "Overall"].values[0])
except Exception:
overall_val = None
if speed_med is not None:
speed_meds.append({
"Model Name": model,
"Display Name": get_display_model_name(model),
"Speed per GPU": (speed_med / num_gpus) if (num_gpus is not None and num_gpus > 0) else 0,
"Speed": speed_med,
"Overall": overall_val,
"GPU": num_gpus
})
if not speed_meds:
fig = go.Figure()
fig.add_annotation(
text=f"No Speed data available for models in selected score range ({category}).",
xref="paper", yref="paper",
x=0.5, y=0.5,
xanchor='center', yanchor='middle',
font=dict(size=18, color="#94A3B8", family="Verdana, sans-serif"),
showarrow=False
)
fig.update_layout(
paper_bgcolor="#01091A",
plot_bgcolor="rgba(245, 246, 247, 0.02)",
height=600,
width=1445,
margin=dict(t=100, b=80, l=80, r=80),
title=dict(
text=f"<b>Speed Bar Plot</b>",
x=0.5,
y=0.97,
font=dict(size=22, family="Verdana, sans-serif", color="#F5F6F7", weight=700)
)
)
return fig
# Sort by selected criterion
if x_axis_sort_by == "Speed":
speed_meds.sort(key=lambda x: x["Speed per GPU"], reverse=True)
elif x_axis_sort_by == "Overall Score":
speed_meds.sort(key=lambda x: (x["Overall"] if x["Overall"] is not None else float('-inf')), reverse=True)
else:
speed_meds.sort(key=lambda x: x["Speed per GPU"], reverse=True) # fallback
x_labels = [x["Display Name"] for x in speed_meds]
y_values = [x["Speed per GPU"] for x in speed_meds]
speed_values = [x.get("Speed", None) for x in speed_meds]
gpu_values = [x.get("GPU", None) for x in speed_meds]
# Use numpy if available, else fallback to list of tuples
try:
customdata = np.stack([speed_values, gpu_values], axis=-1)
except ImportError:
customdata = list(zip(speed_values, gpu_values))
theme_colors = get_theme_colors(theme)
fig = go.Figure()
# Bar plot (Speed)
# Use a vivid blue-skyblue gradient for bars
vivid_blues = [
"#0099FF", "#00BFFF", "#1EC8FF", "#4FC3F7", "#00CFFF", "#00B2FF", "#00AEEF", "#00C6FB", "#00E5FF", "#00B8D9"
]
bar_colors = [vivid_blues[i % len(vivid_blues)] for i in range(len(x_labels))]
fig.add_trace(go.Bar(
x=x_labels,
y=y_values,
name=f"Speed per GPU",
marker=dict(
color=bar_colors,
line=dict(color="#23244a", width=1.5)
),
text=[f"{v:,.1f}" for v in y_values],
textposition="auto",
customdata=customdata,
hovertemplate=(
"<b>%{x}</b><br>" +
"Speed per GPU: %{y:,.1f}<br>" +
"Speed: %{customdata[0]:,.1f}<br>" +
"GPU: %{customdata[1]:d}<extra></extra>"
),
yaxis="y1"
))
# Line plot (Overall, always shown)
overall_values = [x["Overall"] for x in speed_meds]
fig.add_trace(go.Scatter(
x=x_labels,
y=overall_values,
name="Overall Score",
mode="markers",
line=dict(color="#FF8800", width=3),
marker=dict(color="#FF8800", size=10, symbol="triangle-down"),
yaxis="y2",
hovertemplate="<b>%{x}</b><br>Overall: %{y:.2f}<extra></extra>"
))
fig.update_layout(
title=dict(
text=f"<b>Median Speed per GPU and Overall Score</b>",
x=0.5,
y=0.97,
font=dict(size=22, family="Verdana, sans-serif", color="#F5F6F7", weight=700)
),
xaxis=dict(
title=dict(
text="<b>Model</b>",
font=dict(size=16, color=theme_colors["legend_font_color"])
),
# Use white for x-axis tick labels (model names)
tickfont=dict(size=12, color="#F5F6F7"),
tickangle=45,
gridcolor="rgba(245, 246, 247, 0.1)",
zerolinecolor="rgba(245, 246, 247, 0.2)"
),
yaxis=dict(
title=dict(
text=f"<b>Speed per GPU</b>",
# Use vivid blue for y-axis title
font=dict(size=16, color="#00BFFF")
),
# Use vivid blue for y-axis tick labels
tickfont=dict(size=12, color="#00BFFF"),
gridcolor="rgba(245, 246, 247, 0.1)",
zerolinecolor="rgba(245, 246, 247, 0.2)"
),
yaxis2=dict(
title={
"text": "<b>Overall Score</b>",
"font": dict(size=16, color="#FF8800")
},
overlaying="y",
side="right",
showgrid=False,
tickfont=dict(size=12, color="#FF8800")
),
paper_bgcolor=theme_colors["paper_bg"],
plot_bgcolor=theme_colors["plot_bg"],
height=600,
width=1445,
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="center",
x=0.5,
font=dict(size=12, family="Verdana, sans-serif", color=theme_colors["legend_font_color"]),
bgcolor=theme_colors["legend_bg"],
bordercolor='rgba(245, 246, 247, 0.2)',
borderwidth=1
),
margin=dict(t=100, b=120, l=80, r=80)
)
return fig
def create_domain_radar_chart(
df: pd.DataFrame,
metric_type: str,
selected_models: Optional[List[str]] = None,
max_models: int = 5,
theme: str = "light",
mode: str = "open"
) -> Figure:
"""
Create a radar chart showing model performance across domains for the selected metric.
theme: "light" or "dark" (default: "light")
"""
actual_metric_type = SORT_COLUMN_MAP.get(metric_type, metric_type)
domain_mapping = {
'Avg AC': {
'Content Generation': 'π Content Generation',
'Editing': 'βοΈ Editing',
'Data Analysis': 'π Data Analysis',
'Reasoning': 'π§ Reasoning',
'Hallucination': 'π¦ Hallucination',
'Safety': 'π‘οΈ Safety',
'Repetition': 'π Repetition',
'Summarization': 'π Summarization',
'Translation': 'π Translation',
'Multi-Turn': 'π¬ Multi-Turn'
},
'Avg TSQ': {
'Content Generation': 'Content Generation',
'Editing': 'Editing',
'Data Analysis': 'Data Analysis',
'Reasoning': 'Reasoning',
'Hallucination': 'Hallucination',
'Safety': 'Safety',
'Repetition': 'Repetition',
'Summarization': 'Summarization',
'Translation': 'Translation',
'Multi-Turn': 'Multi-Turn'
},
'Avg Total Cost': {
'Content Generation': 'Content Generation',
'Editing': 'Editing',
'Data Analysis': 'Data Analysis',
'Reasoning': 'Reasoning',
'Hallucination': 'Hallucination',
'Safety': 'Safety',
'Repetition': 'Repetition',
'Summarization': 'Summarization',
'Translation': 'Translation',
'Multi-Turn': 'Multi-Turn'
},
'Avg Session Duration': {
'Content Generation': 'Content Generation',
'Editing': 'Editing',
'Data Analysis': 'Data Analysis',
'Reasoning': 'Reasoning',
'Hallucination': 'Hallucination',
'Safety': 'Safety',
'Repetition': 'Repetition',
'Summarization': 'Summarization',
'Translation': 'Translation',
'Multi-Turn': 'Multi-Turn'
},
'Avg Turns': {
'Content Generation': 'Content Generation',
'Editing': 'Editing',
'Data Analysis': 'Data Analysis',
'Reasoning': 'Reasoning',
'Hallucination': 'Hallucination',
'Safety': 'Safety',
'Repetition': 'Repetition',
'Summarization': 'Summarization',
'Translation': 'Translation',
'Multi-Turn': 'Multi-Turn'
}
}
if actual_metric_type not in domain_mapping:
return create_empty_radar_chart(f"Domain breakdown not available for {metric_type}")
if selected_models is None or len(selected_models) == 0:
if actual_metric_type in df.columns:
selected_models = df.nlargest(max_models, actual_metric_type)['Model Name'].tolist()
else:
selected_models = df.head(max_models)['Model Name'].tolist()
selected_models = selected_models[:max_models]
domains = list(domain_mapping[actual_metric_type].keys())
domain_columns = list(domain_mapping[actual_metric_type].values())
harmonious_palette_light = [
{'fill': 'rgba(79,143,198,0.25)', 'line': '#4F8FC6', 'name': 'BlueGray'},
{'fill': 'rgba(109,213,237,0.25)', 'line': '#6DD5ED', 'name': 'SkyBlue'},
{'fill': 'rgba(162,89,247,0.25)', 'line': '#A259F7', 'name': 'Violet'},
{'fill': 'rgba(67,233,123,0.25)', 'line': '#43E97B', 'name': 'Mint'},
{'fill': 'rgba(255,215,0,0.20)', 'line': '#FFD700', 'name': 'Gold'}
]
harmonious_palette_dark = [
{'fill': 'rgba(144,202,249,0.25)', 'line': '#90CAF9', 'name': 'LightBlue'},
{'fill': 'rgba(128,203,196,0.25)', 'line': '#80CBC4', 'name': 'Mint'},
{'fill': 'rgba(179,157,219,0.25)', 'line': '#B39DDB', 'name': 'Lavender'},
{'fill': 'rgba(244,143,177,0.25)', 'line': '#F48FB1', 'name': 'Pink'},
{'fill': 'rgba(255,213,79,0.20)', 'line': '#FFD54F', 'name': 'Gold'}
]
palette = harmonious_palette_light if theme == "light" else harmonious_palette_dark
fig = go.Figure()
for idx, model_name in enumerate(selected_models):
model_data = df[df['Model Name'] == model_name]
if model_data.empty:
continue
model_row = model_data.iloc[0]
values = []
for domain, _ in zip(domains, domain_columns):
if domain in df.columns and domain in model_row:
val = model_row[domain]
if pd.isna(val) or val == '':
val = 0
else:
val = float(val)
values.append(val)
else:
values.append(0)
values_plot = values + [values[0]]
domains_plot = domains + [domains[0]]
colors = palette[idx % len(palette)]
fig.add_trace(
go.Scatterpolar(
r=values_plot,
theta=domains_plot,
fill='toself',
fillcolor=colors['fill'],
line=dict(
color=colors['line'],
width=3,
shape='spline',
smoothing=0.5
),
marker=dict(
size=10,
color=colors['line'],
symbol='circle',
line=dict(width=2, color='#01091A' if theme == "light" else '#e3e6f3')
),
name=get_display_model_name(model_name),
mode="lines+markers",
hovertemplate="<b>%{fullData.name}</b><br>" +
"<span style='color: #94A3B8'>%{theta}</span><br>" +
"<b style='font-size: 12px'>%{r:.3f}</b><br>" +
"<extra></extra>",
hoverlabel=dict(
bgcolor="rgba(1, 9, 26, 0.95)" if theme == "dark" else "rgba(227,230,243,0.95)",
bordercolor=colors['line'],
font=dict(color="#F5F6F7" if theme == "dark" else "#23244a", size=12, family="Verdana, sans-serif")
)
)
)
max_range = 100.0
tick_vals = [i * max_range / 5 for i in range(6)]
tick_text = [f"{val:.2f}" for val in tick_vals]
theme_colors = get_theme_colors(theme)
fig.update_layout(
polar=dict(
bgcolor=theme_colors["plot_bg"],
radialaxis=dict(
visible=True,
range=[0, max_range],
showline=True,
linewidth=2,
linecolor='rgba(245, 246, 247, 0.2)',
gridcolor='rgba(245, 246, 247, 0.1)',
gridwidth=1,
tickvals=tick_vals,
ticktext=tick_text,
tickfont=dict(
size=11,
color='#94A3B8',
family="'Geist Mono', monospace"
),
tickangle=0
),
angularaxis=dict(
showline=True,
linewidth=2,
linecolor='rgba(245, 246, 247, 0.2)',
gridcolor='rgba(245, 246, 247, 0.08)',
tickfont=dict(
size=14,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"],
weight=600
),
rotation=90,
direction="clockwise",
),
),
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.15,
xanchor="center",
x=0.5,
font=dict(
size=12,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"]
),
bgcolor=theme_colors["legend_bg"],
bordercolor='rgba(245, 246, 247, 0.2)',
borderwidth=1,
itemsizing='constant',
itemwidth=30
),
title=dict(
text=f"<b>Category Performance</b>",
x=0.5,
y=0.97,
font=dict(
size=22,
family="Verdana, sans-serif",
color=theme_colors["legend_font_color"],
weight=700
),
),
paper_bgcolor=theme_colors["paper_bg"],
plot_bgcolor=theme_colors["plot_bg"],
height=900,
width=1450,
margin=dict(t=100, b=80, l=80, r=80),
annotations=[
dict(
text="TRUEBench",
xref="paper", yref="paper",
x=0.98, y=0.02,
xanchor='right', yanchor='bottom',
font=dict(size=10, color=theme_colors["annotation_color"]),
showarrow=False
)
]
)
return fig
|