Spaces:
Running
on
Zero
Running
on
Zero
updated v3p3
Browse files
app.py
CHANGED
|
@@ -15,6 +15,58 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipelin
|
|
| 15 |
|
| 16 |
# ... (keep the existing imports and configurations)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Add a new function to parse and validate JSON input
|
| 19 |
def parse_json_parameters(json_str):
|
| 20 |
try:
|
|
|
|
| 15 |
|
| 16 |
# ... (keep the existing imports and configurations)
|
| 17 |
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
DESCRIPTION = "PonyDiffusion V6 XL"
|
| 22 |
+
if not torch.cuda.is_available():
|
| 23 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
| 24 |
+
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 26 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
| 27 |
+
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
| 28 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
| 29 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 30 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 31 |
+
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
| 32 |
+
|
| 33 |
+
MODEL = os.getenv(
|
| 34 |
+
"MODEL",
|
| 35 |
+
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
torch.backends.cudnn.deterministic = True
|
| 39 |
+
torch.backends.cudnn.benchmark = False
|
| 40 |
+
|
| 41 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def load_pipeline(model_name):
|
| 45 |
+
vae = AutoencoderKL.from_pretrained(
|
| 46 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 47 |
+
torch_dtype=torch.float16,
|
| 48 |
+
)
|
| 49 |
+
pipeline = (
|
| 50 |
+
StableDiffusionXLPipeline.from_single_file
|
| 51 |
+
if MODEL.endswith(".safetensors")
|
| 52 |
+
else StableDiffusionXLPipeline.from_pretrained
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
pipe = pipeline(
|
| 56 |
+
model_name,
|
| 57 |
+
vae=vae,
|
| 58 |
+
torch_dtype=torch.float16,
|
| 59 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
| 60 |
+
use_safetensors=True,
|
| 61 |
+
add_watermarker=False,
|
| 62 |
+
use_auth_token=HF_TOKEN,
|
| 63 |
+
variant="fp16",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
pipe.to(device)
|
| 67 |
+
return pipe
|
| 68 |
+
|
| 69 |
+
|
| 70 |
# Add a new function to parse and validate JSON input
|
| 71 |
def parse_json_parameters(json_str):
|
| 72 |
try:
|