Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import uuid | |
| def inference(input_img): | |
| temp = uuid.uuid4() | |
| shell = f"python yolov9/detect.py --source {input_img} --img 640 --device cpu --weights yolov9/runs/train/exp/weights/best.pt --name {temp}" | |
| os.system(shell) | |
| return f"yolov9/runs/detect/{temp}/{input_img.split('/')[-1]}" | |
| def inference_video(input_img): | |
| org_img = input_img | |
| return input_img | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # Vehicle detection using Yolo-v9 | |
| Upload the vehicle image or video for detection | |
| """ | |
| ) | |
| with gr.Tab("Video"): | |
| gr.Markdown( | |
| """ | |
| Upload video mp4 file and detect the count of vehicles passing by | |
| """ | |
| ) | |
| gr.Markdown( | |
| """ | |
| Upload image file and detect vehicles present in the image | |
| """ | |
| ) | |
| with gr.Row(): | |
| img_input = [gr.Video(label="Input Image",width=300, height=300)] | |
| pred_outputs = [gr.Video(label="Output Image",width=300, height=300)] | |
| image_button = gr.Button("Predict") | |
| image_button.click(inference, inputs=img_input, outputs=pred_outputs) | |
| with gr.Tab("Image"): | |
| gr.Markdown( | |
| """ | |
| Upload image file and detect vehicles present in the image | |
| """ | |
| ) | |
| with gr.Row(): | |
| img_input = [gr.Image(type="filepath",label="Input Image",width=300, height=300)] | |
| pred_outputs = [gr.Image(label="Output Image",width=640, height=640)] | |
| image_button = gr.Button("Predict") | |
| image_button.click(inference, inputs=img_input, outputs=pred_outputs) | |
| demo.launch(share=True) | |