Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.preprocessing import LabelEncoder
|
| 7 |
+
|
| 8 |
+
# Load and preprocess the dataset
|
| 9 |
+
data = pd.read_csv('data.csv')
|
| 10 |
+
|
| 11 |
+
# Preprocessing
|
| 12 |
+
data['Age'] = data['Age'].fillna(data['Age'].median())
|
| 13 |
+
data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
|
| 14 |
+
data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce')
|
| 15 |
+
data['Fare'] = data['Fare'].fillna(data['Fare'].median())
|
| 16 |
+
|
| 17 |
+
label_encoder = LabelEncoder()
|
| 18 |
+
data['Gender'] = label_encoder.fit_transform(data['Gender'])
|
| 19 |
+
data['Embarked'] = label_encoder.fit_transform(data['Embarked'])
|
| 20 |
+
|
| 21 |
+
data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True)
|
| 22 |
+
|
| 23 |
+
# Feature selection
|
| 24 |
+
features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
|
| 25 |
+
X = data[features]
|
| 26 |
+
y = data['Survived']
|
| 27 |
+
|
| 28 |
+
# Train the model
|
| 29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 30 |
+
model = RandomForestClassifier(random_state=42)
|
| 31 |
+
model.fit(X_train, y_train)
|
| 32 |
+
|
| 33 |
+
# Gradio interface function
|
| 34 |
+
def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked):
|
| 35 |
+
# Encode Gender and Embarked
|
| 36 |
+
Gender_encoded = 1 if Gender.lower() == 'female' else 0
|
| 37 |
+
Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0)
|
| 38 |
+
|
| 39 |
+
# Create input DataFrame
|
| 40 |
+
input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]],
|
| 41 |
+
columns=features)
|
| 42 |
+
|
| 43 |
+
# Predict
|
| 44 |
+
prediction = model.predict(input_data)
|
| 45 |
+
return "Survived" if prediction[0] == 1 else "Did Not Survive"
|
| 46 |
+
|
| 47 |
+
# Gradio inputs and outputs
|
| 48 |
+
inputs = [
|
| 49 |
+
gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"),
|
| 50 |
+
gr.Radio(["Male", "Female"], label="Gender"),
|
| 51 |
+
gr.Slider(0, 80, step=1, label="Age (in years)"),
|
| 52 |
+
gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"),
|
| 53 |
+
gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"),
|
| 54 |
+
gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"),
|
| 55 |
+
gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)")
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
outputs = gr.Textbox(label="Prediction")
|
| 59 |
+
|
| 60 |
+
# Launch Gradio interface
|
| 61 |
+
gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor").launch()
|