Spaces:
Running
Running
File size: 25,460 Bytes
82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 7cd245f 82d8d17 06916ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
#!/usr/bin/env python3
# proverbs_ultimate_brain.py
"""
ProVerBs Ultimate Brain with Complete Voice Cloning - FIXED VERSION
Integrates Supertonic voice cloning with all controls (mocked if unavailable).
"""
import sys
import os
import asyncio
from typing import Dict, List, Optional, Any, Tuple
# Add current directory to path
sys.path.append(os.path.dirname(__file__))
import gradio as gr
# Optional external client import (may fail; handled below)
try:
from huggingface_hub import InferenceClient
HUGGINGFACE_AVAILABLE = True
except Exception:
HUGGINGFACE_AVAILABLE = False
InferenceClient = None
import json
from datetime import datetime
# Try importing optional modules with fallbacks
try:
from unified_brain import UnifiedBrain, ReasoningContext # type: ignore
UNIFIED_BRAIN_AVAILABLE = True
except Exception:
UNIFIED_BRAIN_AVAILABLE = False
UnifiedBrain = None
print("Warning: unified_brain module not available - using fallback")
try:
from performance_optimizer import performance_cache, performance_monitor, with_caching # type: ignore
PERFORMANCE_AVAILABLE = True
except Exception:
PERFORMANCE_AVAILABLE = False
performance_cache = None
performance_monitor = None
print("Warning: performance_optimizer module not available - using fallback")
try:
from analytics_seo import analytics_tracker, SEOOptimizer # type: ignore
ANALYTICS_AVAILABLE = True
except Exception:
ANALYTICS_AVAILABLE = False
analytics_tracker = None
SEOOptimizer = None
print("Warning: analytics_seo module not available - using fallback")
try:
from supertonic_voice_module import create_supertonic_interface # type: ignore
VOICE_AVAILABLE = True
except Exception:
VOICE_AVAILABLE = False
create_supertonic_interface = None
print("Warning: supertonic_voice_module not available - using fallback")
# =====================================================================
# MOCK CLASSES / FALLBACKS
# =====================================================================
class MockUnifiedBrain:
"""Fallback when unified_brain is not available"""
async def process(self, query: str, preferences: dict, execution_mode: str):
return {
"success": False,
"results": [],
"message": "Unified brain module not available"
}
class MockPerformanceCache:
def get_stats(self):
return {"status": "Cache module not available"}
def clear(self):
return {"status": "cleared"}
class MockPerformanceMonitor:
def get_metrics(self):
return {"status": "Monitor module not available"}
class MockAnalyticsTracker:
def get_analytics(self):
return {"status": "Analytics module not available"}
class MockSEOOptimizer:
@staticmethod
def get_meta_tags() -> str:
return '<meta name="description" content="ProVerBs Legal AI">'
@staticmethod
def get_structured_data() -> str:
return '<script type="application/ld+json">{}</script>'
# Initialize mocks if needed
if not UNIFIED_BRAIN_AVAILABLE:
UnifiedBrain = MockUnifiedBrain
if not PERFORMANCE_AVAILABLE:
performance_cache = MockPerformanceCache()
performance_monitor = MockPerformanceMonitor()
if not ANALYTICS_AVAILABLE:
analytics_tracker = MockAnalyticsTracker()
SEOOptimizer = MockSEOOptimizer()
# =====================================================================
# MAIN CLASS DEFINITION
# =====================================================================
class UltimateLegalBrain:
"""Main brain class for legal AI processing"""
def __init__(self):
# if UnifiedBrain is a class or a factory, instantiate; if it's a mock, it is class too
try:
self.brain = UnifiedBrain()
except Exception:
# Last-resort: use mock instance
self.brain = MockUnifiedBrain()
self.legal_modes = {
"navigation": "π Navigation Guide",
"general": "π¬ General Legal",
"document_validation": "π Document Validator",
"legal_research": "π Legal Research",
"etymology": "π Etymology Expert",
"case_management": "πΌ Case Management",
"regulatory_updates": "π Regulatory Updates"
}
async def process_legal_query(
self,
query: str,
mode: str,
ai_provider: str = "huggingface",
use_reasoning_protocols: bool = True,
**kwargs
) -> Dict[str, Any]:
"""Process legal query with reasoning protocols"""
reasoning_result = None
if use_reasoning_protocols and UNIFIED_BRAIN_AVAILABLE:
preferences = {
"use_reflection": mode in ["document_validation", "legal_research"],
"multi_agent": False
}
try:
reasoning_result = await self.brain.process(
query=query,
preferences=preferences,
execution_mode="sequential"
)
except Exception as e:
print(f"Reasoning error: {e}")
reasoning_result = None
legal_prompt = self.get_legal_system_prompt(mode)
if reasoning_result and reasoning_result.get("success"):
# produce a short trace if present
reasoning_trace = "\n".join([
f"π§ {r.get('protocol','unknown')}: {', '.join(r.get('trace', [])[:2])}"
for r in reasoning_result.get("results", [])
])
enhanced_query = f"{legal_prompt}\n\nReasoning Analysis:\n{reasoning_trace}\n\nUser Query: {query}"
else:
enhanced_query = f"{legal_prompt}\n\nUser Query: {query}"
return {
"enhanced_query": enhanced_query,
"reasoning_result": reasoning_result,
"mode": mode,
"ai_provider": ai_provider
}
def get_legal_system_prompt(self, mode: str) -> str:
"""Get system prompt for specific legal mode"""
prompts = {
"navigation": "You are a ProVerBs Legal AI Navigation Guide with advanced reasoning capabilities.",
"general": "You are a General Legal Assistant powered by ADAPPT-Iβ’ reasoning technology.",
"document_validation": "You are a Document Validator using Chain-of-Thought and Self-Consistency protocols.",
"legal_research": "You are a Legal Research Assistant with RAG and Tree-of-Thoughts capabilities.",
"etymology": "You are a Legal Etymology Expert with multi-step reasoning.",
"case_management": "You are a Case Management Helper with ReAct protocol integration.",
"regulatory_updates": "You are a Regulatory Monitor with real-time analysis capabilities."
}
return prompts.get(mode, prompts["general"])
# =====================================================================
# INITIALIZE BRAIN
# =====================================================================
ultimate_brain = UltimateLegalBrain()
# =====================================================================
# RESPONSE HANDLER
# =====================================================================
def respond_with_ultimate_brain(
message: str,
history: List[Tuple[Optional[str], Optional[str]]],
mode: str,
ai_provider: str,
use_reasoning: bool,
max_tokens: int,
temperature: float,
top_p: float,
request: Optional[gr.Request] = None
):
"""
Main response handler - synchronous wrapper for async processing.
This is a generator that yields partial or complete responses for streaming.
"""
# Run the async processing in a fresh event loop (to avoid "already running loop" errors)
brain_result = None
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
brain_result = loop.run_until_complete(
ultimate_brain.process_legal_query(
query=message,
mode=mode,
ai_provider=ai_provider,
use_reasoning_protocols=use_reasoning
)
)
except Exception as e:
# If something fails, yield a warning and continue with fallback prompt
yield f"β οΈ Reasoning processing error: {str(e)}\n\nContinuing with standard processing...\n\n"
brain_result = {
"enhanced_query": ultimate_brain.get_legal_system_prompt(mode) + f"\n\nUser Query: {message}",
"reasoning_result": None,
"mode": mode,
"ai_provider": ai_provider
}
finally:
try:
loop.close()
except Exception:
pass
# Build reasoning info if available
reasoning_info = ""
if use_reasoning and brain_result.get("reasoning_result"):
reasoning_info = "π§ **Reasoning Protocols Applied:**\n"
for r in brain_result["reasoning_result"].get("results", []):
reasoning_info += f"- {r.get('protocol', 'Unknown')}: β
{r.get('status', 'completed')}\n"
reasoning_info += "\n\n"
yield reasoning_info
# Handle the AI provider; currently only huggingface is implemented
if ai_provider == "huggingface":
# Build HF client if available, otherwise return the enhanced query as text
if not HUGGINGFACE_AVAILABLE or InferenceClient is None:
# Return enhanced query so user can see what would be asked
yield reasoning_info + brain_result["enhanced_query"]
return
try:
hf_token = os.environ.get("HF_TOKEN")
# If running in Gradio request context, try to pull token from headers
if not hf_token and request is not None:
try:
hf_token = request.headers.get("authorization", "").replace("Bearer ", "")
except Exception:
hf_token = None
if not hf_token:
yield reasoning_info + "β HuggingFace token not found. Set HF_TOKEN environment variable or pass token in request."
return
client = InferenceClient(token=hf_token, model="meta-llama/Llama-3.3-70B-Instruct")
# Build message history
messages = [{"role": "system", "content": brain_result["enhanced_query"]}]
for user_msg, assistant_msg in history or []:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Stream response using client.chat_completion if available
response_text = reasoning_info
# Defensive: check if client has chat_completion attribute
if hasattr(client, "chat_completion"):
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p
):
# chunk shape may vary; attempt to extract text
try:
delta = chunk.choices[0].delta
content = delta.content if hasattr(delta, "content") else delta.get("content", "")
except Exception:
content = chunk.get("text", "") if isinstance(chunk, dict) else ""
response_text += content
yield response_text
else:
# If no streaming API, perform a single request (defensive)
res = client.chat(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p)
text = ""
try:
text = res.choices[0].message.content
except Exception:
text = str(res)
response_text += text
yield response_text
except Exception as e:
yield f"{reasoning_info}\n\nβ HuggingFace API Error: {str(e)}\n\nPlease check your API token or try another provider."
else:
# Other providers not yet implemented
yield f"{reasoning_info}\n\nβ οΈ Provider '{ai_provider}' is not yet implemented. Using HuggingFace as fallback or implement your own provider logic."
# =====================================================================
# MOCK VOICE INTERFACE (if supertonic not available)
# =====================================================================
def create_mock_voice_interface():
"""Fallback voice interface when supertonic module is unavailable"""
# The function must place Gradio components in the current Blocks context.
gr.Markdown("""
## ποΈ Voice Cloning Module
β οΈ **Supertonic voice module not found.**
To enable voice cloning:
1. Install required dependencies
2. Add `supertonic_voice_module.py` to your project
3. Restart the application
### Expected Features:
- Voice recording with professional controls
- Text-to-speech with voice cloning
- Audio playback and export
- Voice profile management
""")
with gr.Row():
gr.Button("π€ Record (Not Available)", interactive=False)
gr.Button("βΈοΈ Pause (Not Available)", interactive=False)
gr.Button("βΉοΈ Stop (Not Available)", interactive=False)
# =====================================================================
# CUSTOM CSS & SEO
# =====================================================================
custom_css = """
.gradio-container { max-width: 1400px !important; }
.header-section {
text-align: center; padding: 40px 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; border-radius: 12px; margin-bottom: 30px;
}
.header-section h1 { font-size: 3rem; margin-bottom: 10px; font-weight: 700; }
.brain-badge {
display: inline-block; background: #ff6b6b; color: white;
padding: 8px 16px; border-radius: 20px; font-weight: bold;
margin: 10px 5px;
}
"""
seo_meta = SEOOptimizer.get_meta_tags() if SEOOptimizer is not None else ""
seo_structured = SEOOptimizer.get_structured_data() if SEOOptimizer is not None else ""
# =====================================================================
# GRADIO INTERFACE
# =====================================================================
demo = gr.Blocks(title="ProVerBs Ultimate Legal AI Brain", css=custom_css)
with demo:
# Add SEO tags (as HTML)
if seo_meta or seo_structured:
gr.HTML(seo_meta + seo_structured)
# Header
gr.HTML("""
<div class="header-section">
<h1>βοΈ ProVerBs Ultimate Legal AI Brain</h1>
<p style="font-size: 1.3rem;">Powered by Pro'VerBsβ’ & ADAPPT-Iβ’ Technology</p>
<div>
<span class="brain-badge">π§ 100+ Reasoning Protocols</span>
<span class="brain-badge">π€ 6 AI Models</span>
<span class="brain-badge">βοΈ 7 Legal Modes</span>
<span class="brain-badge">ποΈ Voice Cloning</span>
</div>
<p style="font-size: 0.9rem; margin-top: 15px; opacity: 0.9;">
Chain-of-Thought β’ Self-Consistency β’ Tree-of-Thoughts β’ ReAct β’ Reflexion β’ RAG<br>
Quantum Reasoning β’ Multi-Agent β’ Voice Cloning β’ Audio Processing
</p>
</div>
""")
with gr.Tabs():
# Welcome Tab
with gr.Tab("π Welcome"):
gr.Markdown("""
## Welcome to the Ultimate ProVerBs Legal AI Brain
### π§ Unified Reasoning Brain (100+ Protocols)
**Core Reasoning Protocols:**
- Chain-of-Thought (CoT) - Step-by-step reasoning
- Self-Consistency - Multiple reasoning paths
- Tree-of-Thoughts (ToT) - Branching exploration
- ReAct - Reason + Act cycles
- Reflexion - Self-reflection with memory
- RAG - Retrieval-Augmented Generation
### π€ 6 AI Model Options:
- π€ HuggingFace Llama-3.3-70B (Free, always available if token present)
- π§ GPT-4 Turbo (OpenAI) - Coming Soon
- β¨ Gemini 3.0 (Google) - Coming Soon
- π Perplexity AI (Research) - Coming Soon
- π₯· Ninja AI - Coming Soon
- π» LM Studio (Local) - Coming Soon
### βοΈ 7 Specialized Legal Modes:
- Navigation | General Legal | Document Validation
- Legal Research | Etymology | Case Management | Regulatory Updates
### ποΈ Voice Cloning:
- Record voice samples
- Clone voices with text-to-speech
- Professional audio processing
- Voice profile management
**Get Started:** Click "π€ AI Legal Chatbot" tab!
""")
# AI Chatbot Tab
with gr.Tab("π€ AI Legal Chatbot"):
gr.Markdown("## Multi-AI Legal Chatbot\nSelect your AI model and legal assistant mode below!")
with gr.Row():
ai_provider_selector = gr.Dropdown(
choices=[
("π€ Llama-3.3-70B (Free)", "huggingface"),
("π§ GPT-4 Turbo", "gpt4"),
("β¨ Gemini 3.0", "gemini"),
("π Perplexity AI", "perplexity"),
("π₯· Ninja AI", "ninjaai"),
("π» LM Studio", "lmstudio")
],
value="huggingface",
label="π€ AI Model"
)
mode_selector = gr.Dropdown(
choices=[
("π Navigation", "navigation"),
("π¬ General Legal", "general"),
("π Document Validator", "document_validation"),
("π Legal Research", "legal_research"),
("π Etymology", "etymology"),
("πΌ Case Management", "case_management"),
("π Regulatory Updates", "regulatory_updates")
],
value="general",
label="βοΈ Legal Mode"
)
use_reasoning_toggle = gr.Checkbox(
label="π§ Enable Reasoning Protocols",
value=True,
info="Use 100+ reasoning protocols for enhanced analysis"
)
# Chatbot elements: use a Chatbot and Textbox + button to call the generator
chatbot_display = gr.Chatbot(label="Ultimate Legal AI", height=550)
user_input = gr.Textbox(placeholder="Ask your legal question here...", lines=2)
max_tokens_slider = gr.Slider(128, 4096, value=2048, step=128, label="Max Tokens")
temp_slider = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
submit_btn = gr.Button("Send")
# simple history storage in a state component
conv_history = gr.State([])
# Function to call the generator and stream into chatbot
def chat_send(message, history, mode, ai_provider, use_reasoning, max_tokens, temperature, top_p, request: gr.Request = None):
# This helper collects yielded chunks and returns appended list items for chatbot
# We'll yield intermediate states from the generator by returning a list of messages
gen = respond_with_ultimate_brain(
message=message,
history=history,
mode=mode,
ai_provider=ai_provider,
use_reasoning=use_reasoning,
max_tokens=int(max_tokens),
temperature=float(temperature),
top_p=float(top_p),
request=request
)
# Ensure initial user message is added
new_history = history[:] if history else []
new_history.append((message, None)) # assistant reply to be filled
# Collect stream
assistant_text = ""
for chunk in gen:
assistant_text = chunk # chunk contains full assembled text each yield in our generator
# Finalize last message
# replace the placeholder None with assistant_text
if new_history and new_history[-1][1] is None:
new_history[-1] = (new_history[-1][0], assistant_text)
return new_history, new_history, ""
submit_btn.click(
fn=chat_send,
inputs=[user_input, conv_history, mode_selector, ai_provider_selector, use_reasoning_toggle, max_tokens_slider, temp_slider, top_p_slider, gr.State()],
outputs=[chatbot_display, conv_history, user_input]
)
# Voice Cloning Tab
with gr.Tab("ποΈ Voice Cloning"):
if VOICE_AVAILABLE and create_supertonic_interface is not None:
# If the real interface exists, call it
try:
create_supertonic_interface()
except Exception:
# fallback to mock if real module fails at runtime
create_mock_voice_interface()
else:
create_mock_voice_interface()
# Analytics Tab
with gr.Tab("π Analytics"):
gr.Markdown("## Analytics & Performance Dashboard\nView real-time analytics and performance metrics for the Ultimate Brain.")
with gr.Row():
analytics_btn = gr.Button("π Refresh Analytics", variant="primary")
clear_cache_btn = gr.Button("ποΈ Clear Cache", variant="secondary")
analytics_output = gr.JSON(label="Analytics Data")
performance_output = gr.JSON(label="Performance Metrics")
cache_stats_output = gr.JSON(label="Cache Statistics")
def refresh_analytics():
return (
analytics_tracker.get_analytics() if analytics_tracker else {"status": "no analytics"},
performance_monitor.get_metrics() if performance_monitor else {"status": "no monitor"},
performance_cache.get_stats() if performance_cache else {"status": "no cache"}
)
analytics_btn.click(
fn=refresh_analytics,
inputs=[],
outputs=[analytics_output, performance_output, cache_stats_output]
)
def clear_cache_fn():
return performance_cache.clear() if performance_cache else {"status": "no cache"}
clear_cache_btn.click(
fn=clear_cache_fn,
inputs=[],
outputs=[cache_stats_output]
)
# About Tab
with gr.Tab("βΉοΈ About"):
status_text = "β
All modules loaded" if all([
UNIFIED_BRAIN_AVAILABLE,
PERFORMANCE_AVAILABLE,
ANALYTICS_AVAILABLE,
VOICE_AVAILABLE
]) else "β οΈ Some modules unavailable (using fallbacks)"
gr.Markdown(f"""
## About ProVerBs Ultimate Legal AI Brain
### Status: {status_text}
**Module Status:**
- Unified Brain: {"β
" if UNIFIED_BRAIN_AVAILABLE else "β οΈ Fallback"}
- Performance: {"β
" if PERFORMANCE_AVAILABLE else "β οΈ Fallback"}
- Analytics: {"β
" if ANALYTICS_AVAILABLE else "β οΈ Fallback"}
- Voice Cloning: {"β
" if VOICE_AVAILABLE else "β οΈ Not Available"}
### π Revolutionary Features:
- **100+ Reasoning Protocols** - Most advanced reasoning system
- **6 AI Models** - Choose the best for your needs
- **7 Legal Modes** - Specialized for different legal tasks
- **Voice Cloning** - Professional Supertonic integration (when available)
### β οΈ Disclaimer:
This platform provides general legal information only. Consult with a licensed attorney for specific legal matters.
---
**Version 3.0.1 FIXED** | Built by Solomon7890
""")
# Footer
gr.Markdown("""
---
<div style="text-align: center; padding: 20px;">
<p><strong>βοΈ ProVerBs Ultimate Legal AI Brain v3.0.1</strong></p>
<p>Powered by Pro'VerBsβ’ & ADAPPT-Iβ’ | 100+ Protocols | 6 AI Models</p>
<p style="font-size: 0.85rem; color: #666;">
Β© 2025 Solomon 8888 | Built with β€οΈ for legal professionals worldwide
</p>
</div>
""")
# =====================================================================
# LAUNCH
# =====================================================================
if __name__ == "__main__":
# tune queue size and launch options as desired
demo.queue(max_size=20)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|