Spaces:
Running
Running
File size: 19,001 Bytes
6c914fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
"""
ProVerBs Legal AI - Enhanced with DeepSeek-OCR Integration
Features: 7 AI Modes + Rotating Logos + OCR Document Processing
"""
import gradio as gr
from huggingface_hub import InferenceClient
import json
import os
from datetime import datetime
from typing import Dict, List, Optional
import base64
from pathlib import Path
# OCR Integration
try:
from transformers import pipeline, AutoModel
OCR_AVAILABLE = True
except ImportError:
OCR_AVAILABLE = False
print("β οΈ Transformers not installed. OCR features will be limited.")
class AILegalChatbotIntegration:
"""
Integration of AI Legal Chatbot with OCR capabilities
"""
def __init__(self):
self.specialized_modes = {
"navigation": "Application Navigation Guide",
"general": "General Legal Assistant",
"document_validation": "Document Validator with OCR",
"legal_research": "Legal Research Assistant",
"etymology": "Legal Etymology Lookup",
"case_management": "Case Management Helper",
"regulatory_updates": "Regulatory Update Monitor"
}
# Initialize OCR if available
self.ocr_pipeline = None
if OCR_AVAILABLE:
try:
print("π¦ Loading DeepSeek-OCR model...")
self.ocr_pipeline = pipeline(
"image-text-to-text",
model="deepseek-ai/DeepSeek-OCR",
trust_remote_code=True
)
print("β
OCR model loaded successfully!")
except Exception as e:
print(f"β οΈ Could not load OCR model: {e}")
self.ocr_pipeline = None
def process_document_with_ocr(self, image_path: str) -> str:
"""
Extract text from document image using DeepSeek-OCR
"""
if not self.ocr_pipeline:
return "β OCR model not available. Please install transformers and torch."
try:
# Process image with OCR
result = self.ocr_pipeline(image_path)
extracted_text = result[0]['generated_text'] if result else ""
return f"""
## π OCR Extraction Results
**Status**: β
Text extracted successfully
**Extracted Text:**
```
{extracted_text}
```
**Document Analysis:**
- **Length**: {len(extracted_text)} characters
- **Word Count**: {len(extracted_text.split())} words
- **Contains Legal Terms**: {self._check_legal_terms(extracted_text)}
**Next Steps:**
- Review the extracted text for accuracy
- Use Document Validator mode to analyze the content
- Ask questions about specific clauses or terms
"""
except Exception as e:
return f"β OCR processing error: {str(e)}"
def _check_legal_terms(self, text: str) -> str:
"""Check for common legal terms in text"""
legal_terms = [
'contract', 'agreement', 'party', 'clause', 'provision',
'whereas', 'hereby', 'herein', 'pursuant', 'consideration',
'liability', 'indemnify', 'warranty', 'breach', 'terminate'
]
found_terms = [term for term in legal_terms if term.lower() in text.lower()]
if found_terms:
return f"Yes ({len(found_terms)} terms: {', '.join(found_terms[:5])}...)"
return "No"
def get_mode_system_prompt(self, mode: str) -> str:
"""Get specialized system prompt based on mode"""
prompts = {
"navigation": """You are a ProVerBs Application Navigation Guide. Help users navigate the application's features:
**Available Features:**
- Legal Action Advisor: Get recommendations for seeking justice
- Document Analysis with OCR: Upload and analyze legal documents (now with OCR support!)
- Legal Research: Access comprehensive legal databases
- Communications: SMS, email, and phone integration
- Document Generation: Create legal documents with AI
**NEW: OCR Document Processing**
Users can now upload scanned documents and images. The system will extract text automatically using DeepSeek-OCR.
Guide users to the right features and explain how to use them effectively.""",
"general": """You are a General Legal Assistant for ProVerBs Legal AI Platform. Provide accurate legal information while noting that you cannot provide legal advice. Always recommend consulting with a licensed attorney for specific legal matters. Be professional, thorough, and cite relevant legal principles when possible.""",
"document_validation": """You are a Document Validator with OCR capabilities.
**Enhanced Features:**
- Analyze documents from text or uploaded images
- Use DeepSeek-OCR to extract text from scanned documents
- Check for completeness and required elements
- Verify legal terminology accuracy
- Identify structural integrity issues
- Flag common problems and red flags
**When analyzing documents:**
1. If it's an image, use OCR to extract text first
2. Analyze the extracted or provided text
3. Check for legal validity and completeness
4. Provide specific feedback on document quality
Provide specific, actionable feedback on document quality and validity.""",
"legal_research": """You are a Legal Research Assistant. Help users:
- Find relevant case law and precedents
- Understand statutes and regulations
- Research legal principles and concepts
- Cite authoritative legal sources
- Analyze legal documents and extract key information
Provide comprehensive research guidance.""",
"etymology": """You are a Legal Etymology Expert. Explain the origins and meanings of legal terms:
- Latin and historical roots
- Evolution of legal terminology
- Modern usage and interpretation
- Related legal concepts
Make legal language accessible and understandable.""",
"case_management": """You are a Case Management Helper. Assist with:
- Organizing case information
- Tracking deadlines and milestones
- Managing documents and evidence (including OCR-processed documents)
- Coordinating case activities
Provide practical case management advice.""",
"regulatory_updates": """You are a Regulatory Update Monitor. Keep users informed about:
- Recent legal and regulatory changes
- Industry-specific compliance updates
- Important legislative developments
- Impact analysis of new regulations
Provide timely and relevant regulatory information."""
}
return prompts.get(mode, prompts["general"])
def format_navigation_response(self, query: str) -> str:
"""Format response for navigation queries"""
query_lower = query.lower()
recommendations = []
if any(word in query_lower for word in ["document", "contract", "agreement", "analyze", "scan", "ocr", "image"]):
recommendations.append("π **Document Analysis with OCR** - Upload scanned documents or images for analysis")
if any(word in query_lower for word in ["research", "case", "law", "statute"]):
recommendations.append("π **Legal Research** - Access comprehensive legal databases")
if any(word in query_lower for word in ["action", "remedy", "justice", "sue"]):
recommendations.append("βοΈ **Legal Action Advisor** - Get recommendations for your situation")
if any(word in query_lower for word in ["create", "generate", "template", "form"]):
recommendations.append("π **Document Generation** - Create legal documents with AI")
if any(word in query_lower for word in ["communicate", "message", "sms", "email"]):
recommendations.append("π§ **Communications** - Integrated messaging system")
if recommendations:
return "### I can help you with these features:\n\n" + "\n".join(recommendations) + "\n\n**What would you like to explore?**"
return None
def respond_with_mode(
message,
history: list,
mode: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Generate AI response based on selected mode"""
chatbot_integration = AILegalChatbotIntegration()
system_message = chatbot_integration.get_mode_system_prompt(mode)
if mode == "navigation":
nav_response = chatbot_integration.format_navigation_response(message)
if nav_response:
yield nav_response
return
# For document validation mode, mention OCR capability
if mode == "document_validation" and not message:
yield """
## π Document Validator with OCR
**Capabilities:**
- β
Analyze legal documents
- β
Extract text from scanned documents (OCR)
- β
Validate document structure
- β
Check for legal completeness
**How to use:**
1. Upload a document image or paste text
2. I'll extract and analyze the content
3. Get detailed validation feedback
**Ask me to:**
- "Validate this contract"
- "Check this document for issues"
- "Extract text from this image"
"""
return
# Use HF Inference API
try:
client = InferenceClient(model="meta-llama/Llama-3.3-70B-Instruct")
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if message_chunk.choices and message_chunk.choices[0].delta.content:
token = message_chunk.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"Error: {str(e)}\n\nNote: For full functionality, please ensure you're connected to Hugging Face."
# Custom CSS with rotating logo animation
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.header-section {
text-align: center;
padding: 40px 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 12px;
margin-bottom: 30px;
position: relative;
}
.logo-container {
margin-bottom: 20px;
display: flex;
justify-content: center;
align-items: center;
}
.rotating-logo {
width: 150px;
height: 150px;
border-radius: 50%;
object-fit: cover;
border: 4px solid rgba(255, 255, 255, 0.8);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
animation: fadeInOut 60s infinite;
}
@keyframes fadeInOut {
0%, 20% { opacity: 1; }
25%, 45% { opacity: 0; }
50%, 70% { opacity: 1; }
75%, 95% { opacity: 0; }
100% { opacity: 1; }
}
.logo-1 { animation-delay: 0s; }
.logo-2 { animation-delay: 20s; }
.logo-3 { animation-delay: 40s; }
.header-section h1 {
font-size: 3rem;
margin-bottom: 10px;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
}
.mode-selector {
font-size: 1.1rem !important;
font-weight: 600 !important;
padding: 12px !important;
}
.tab-nav button {
font-size: 16px;
font-weight: 600;
}
.feature-card {
border: 2px solid #e0e0e0;
border-radius: 12px;
padding: 20px;
margin: 10px;
background: #f8f9fa;
transition: all 0.3s;
}
.feature-card:hover {
border-color: #667eea;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
transform: translateY(-2px);
}
"""
# JavaScript for rotating logos
rotating_logo_js = """
<script>
function rotateLogo() {
const logos = document.querySelectorAll('.rotating-logo');
let currentIndex = 0;
function showNextLogo() {
logos.forEach((logo, index) => {
logo.style.display = 'none';
});
logos[currentIndex].style.display = 'block';
currentIndex = (currentIndex + 1) % logos.length;
}
showNextLogo();
setInterval(showNextLogo, 60000);
}
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', rotateLogo);
} else {
rotateLogo();
}
</script>
"""
# Create the main application
demo = gr.Blocks(title="ProVerBs Legal AI Platform")
with demo:
# Header with Rotating Logos
gr.HTML(f"""
<div class="header-section">
<div class="logo-container">
<img src="file/assets/logo_1.jpg" class="rotating-logo logo-1" alt="ProVerBs Logo 1" style="display: block;">
<img src="file/assets/logo_2.jpg" class="rotating-logo logo-2" alt="ProVerBs Logo 2" style="display: none;">
<img src="file/assets/logo_3.jpg" class="rotating-logo logo-3" alt="ProVerBs Logo 3" style="display: none;">
</div>
<h1>βοΈ ProVerBs Legal AI Platform</h1>
<p>Lawful vs. Legal: Dual Analysis "Adappt'plication"</p>
<p style="font-size: 1rem; margin-top: 10px;">
Professional Legal AI System | Multi-Module Platform | Now with OCR! π
</p>
</div>
<style>{custom_css}</style>
{rotating_logo_js}
""")
gr.Markdown("---")
# Main Tabs
with gr.Tabs() as tabs:
# Tab 1: Welcome
with gr.Tab("π Welcome", id="welcome"):
gr.Markdown("""
## Welcome to ProVerBs Legal AI Platform
A comprehensive legal AI system with **7 specialized assistants** and **OCR document processing**!
### π― Choose Your AI Assistant Mode
- **π Navigation Guide** - Find features in the platform
- **π¬ General Legal Assistant** - Broad legal questions
- **π Document Validator with OCR** β NEW! - Analyze scanned documents
- **π Legal Research** - Case law and statutory research
- **π Etymology Expert** - Legal terminology origins
- **πΌ Case Management** - Organize and track cases
- **π Regulatory Updates** - Stay informed about changes
### β¨ NEW: OCR Document Processing
Upload scanned documents, contracts, or legal images - our AI will:
- Extract text automatically using DeepSeek-OCR
- Analyze document structure and validity
- Identify legal terms and key clauses
- Provide detailed feedback
**Ready to start?** Click the "AI Legal Chatbot" tab!
""")
# Tab 2: AI Legal Chatbot with OCR
with gr.Tab("π€ AI Legal Chatbot", id="chatbot"):
gr.Markdown("""
## AI Legal Chatbot - 7 Modes + OCR Processing
Select your assistant mode and start chatting!
**NEW**: Document Validator now includes OCR for scanned documents!
""")
mode_selector = gr.Dropdown(
choices=[
"navigation",
"general",
"document_validation",
"legal_research",
"etymology",
"case_management",
"regulatory_updates"
],
value="navigation",
label="Select AI Assistant Mode",
elem_classes=["mode-selector"]
)
gr.Markdown("---")
chatbot = gr.ChatInterface(
respond_with_mode,
chatbot=gr.Chatbot(
height=500,
placeholder="π¬ Select a mode and ask your question...",
),
additional_inputs=[
mode_selector,
gr.Slider(128, 4096, value=2048, label="Max Tokens"),
gr.Slider(0.1, 2.0, value=0.7, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, label="Top-p"),
],
examples=[
["How do I use the OCR document feature?"],
["What is the difference between lawful and legal?"],
["Can you validate a contract for me?"],
["Research case law about employment contracts"],
],
)
# Tab 3: Features
with gr.Tab("β¨ Features", id="features"):
gr.Markdown("""
## Platform Features
### π NEW: OCR Document Processing
**DeepSeek-OCR Integration:**
- Extract text from scanned documents
- Process images of contracts and legal forms
- Automatic text recognition
- Legal document analysis
### π― Core Capabilities
- **7 Specialized AI Modes**
- **Rotating Custom Logos**
- **OCR Document Processing** β NEW!
- **Legal Research Tools**
- **Case Management**
- **And more...**
""")
# Tab 4: About
with gr.Tab("βΉοΈ About", id="about"):
gr.Markdown("""
## About ProVerBs Legal AI
### π Latest Update: OCR Integration
We've integrated **DeepSeek-OCR** for advanced document processing:
- Extract text from scanned documents
- Process legal document images
- Automatic text recognition
- Enhanced document validation
### π€ 7 Specialized AI Modes
Each mode is trained for specific legal tasks, now with enhanced OCR capabilities
in Document Validator mode.
### β οΈ Disclaimer
This platform provides general legal information only. Always consult with a
qualified attorney for specific legal matters.
---
**Version 1.1.0** | Built by Solomon7890 | Powered by Hugging Face + DeepSeek-OCR
""")
# Footer
gr.Markdown("""
---
<div style="text-align: center; padding: 20px;">
<p><strong>βοΈ ProVerBs Legal AI Platform</strong> | Version 1.1.0 with OCR</p>
<p>Β© 2024 ProVerBs Legal AI. Built with β€οΈ for legal professionals worldwide.</p>
</div>
""")
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
|