File size: 11,563 Bytes
e337fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623fea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e337fdb
623fea8
 
 
 
e337fdb
623fea8
e337fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623fea8
e337fdb
623fea8
e337fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
"""
Gradio web interface for artifact classification
"""

import os
# Fix SSL issue on Windows
os.environ['SSL_CERT_FILE'] = ''

import gradio as gr
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import numpy as np
import os
import json
from pathlib import Path

# Define the model architecture directly (standalone)
import torch
import torch.nn as nn
from torchvision import models

class MultiOutputModel(nn.Module):
    """Multi-output model for artifact classification"""

    def __init__(self, num_object_classes, num_material_classes, hidden_size=512):
        super(MultiOutputModel, self).__init__()

        # Use a pre-trained ResNet as backbone
        self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
        # Remove the final classification layer
        self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])

        # Freeze early layers for transfer learning
        for param in list(self.backbone.parameters())[:-2]:
            param.requires_grad = False

        # Classification heads for each attribute
        self.object_classifier = nn.Linear(2048, num_object_classes)
        self.material_classifier = nn.Linear(2048, num_material_classes)

        # Dropout for regularization
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):
        # Extract features using backbone
        features = self.backbone(x)
        features = features.view(features.size(0), -1)
        features = self.dropout(features)

        # Get predictions for each attribute
        object_pred = self.object_classifier(features)
        material_pred = self.material_classifier(features)

        return {
            'object_name': object_pred,
            'material': material_pred,
        }

print("MultiOutputModel class defined directly in app (standalone)")

class ArtifactClassifier:
    def __init__(self, model_path="train/outputs/best_model.pth"):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        print(f"Using device: {self.device}")

        # Try to load from local file first, then from HuggingFace
        self.model = self.load_model(model_path)
        self.model.to(self.device)
        self.model.eval()

        # Set up transforms (same as training)
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

        # Load label mappings if available
        self.label_mappings = self.load_label_mappings()
        print("Model loaded successfully!")

    def load_model(self, model_path):
        """Load the trained model from local file or HuggingFace Hub"""
        # First try to load from local file
        if os.path.exists(model_path):
            print(f"Loading model from local file: {model_path}")
            return self._load_model_from_path(model_path)

        # If local file doesn't exist, try to download from HuggingFace
        print(f"Local model not found, downloading from HuggingFace...")
        try:
            return self._load_model_from_hub()
        except Exception as e:
            print(f"Failed to download from HuggingFace: {e}")
            print("Falling back to local model creation...")
            return self._create_model_with_defaults()

    def _load_model_from_path(self, model_path):
        """Load model from local file"""
        checkpoint = torch.load(model_path, map_location=self.device)

        # Get label mappings to determine number of classes
        label_mappings = checkpoint.get('label_mappings', {})
        num_object_classes = len(label_mappings.get('object_name', {}))
        num_material_classes = len(label_mappings.get('material', {}))

        if num_object_classes == 0:
            print("Warning: No label mappings found, using fallback class counts")
            num_object_classes, num_material_classes = 1018, 192

        # Create model
        model = MultiOutputModel(num_object_classes, num_material_classes)
        model.load_state_dict(checkpoint['model_state_dict'])

        return model

    def _load_model_from_hub(self):
        """Download and load model from HuggingFace Hub"""
        try:
            from huggingface_hub import hf_hub_download

            print("Downloading model from HuggingFace Hub...")
            model_file = hf_hub_download(
                repo_id="SpyC0der77/artifact-classification-model",
                filename="best_model.pth"
            )

            print(f"Model downloaded to: {model_file}")
            return self._load_model_from_path(model_file)

        except Exception as e:
            print(f"Error downloading from HuggingFace: {e}")
            raise

    def _create_model_with_defaults(self):
        """Create model with default parameters when no model is available"""
        print("Creating model with default parameters...")
        print("Note: This model won't have the trained weights!")

        # Use default class counts
        num_object_classes, num_material_classes = 1018, 192

        # Create model
        model = MultiOutputModel(num_object_classes, num_material_classes)

        return model

    def load_label_mappings(self):
        """Load label mappings for decoding predictions"""
        # First try local model
        model_path = "train/outputs/best_model.pth"
        if os.path.exists(model_path):
            try:
                checkpoint = torch.load(model_path, map_location='cpu')
                mappings = checkpoint.get('label_mappings', {})

                # Create reverse mappings
                reverse_mappings = {}
                for attr, mapping in mappings.items():
                    reverse_mappings[attr] = {v: k for k, v in mapping.items()}

                return reverse_mappings
            except Exception as e:
                print(f"Could not load local label mappings: {e}")

        # Try to download from HuggingFace
        try:
            print("Downloading label mappings from HuggingFace...")
            from huggingface_hub import hf_hub_download

            mappings_file = hf_hub_download(
                repo_id="SpyC0der77/artifact-classification-model",
                filename="best_model.pth"  # Contains the mappings
            )

            checkpoint = torch.load(mappings_file, map_location='cpu')
            mappings = checkpoint.get('label_mappings', {})

            # Create reverse mappings
            reverse_mappings = {}
            for attr, mapping in mappings.items():
                reverse_mappings[attr] = {v: k for k, v in mapping.items()}

            print(f"Loaded {len(reverse_mappings)} label mappings from HuggingFace")
            return reverse_mappings

        except Exception as e:
            print(f"Could not load label mappings from HuggingFace: {e}")

        return {}

    def predict(self, image):
        """Make prediction on uploaded image"""
        try:
            # Convert to PIL Image if needed
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image).convert('RGB')
            elif not isinstance(image, Image.Image):
                image = Image.open(image).convert('RGB')

            # Apply transforms
            image_tensor = self.transform(image).unsqueeze(0).to(self.device)

            # Make prediction
            with torch.no_grad():
                outputs = self.model(image_tensor)

            # Process results
            results = {}
            for attr in ['object_name', 'material']:
                if attr in outputs:
                    # Get probabilities and prediction
                    probs = torch.softmax(outputs[attr], dim=1)
                    confidence, predicted_idx = torch.max(probs, dim=1)

                    pred_class = predicted_idx.item()
                    conf = confidence.item()

                    # Convert to label name
                    if attr in self.label_mappings and pred_class in self.label_mappings[attr]:
                        pred_label = self.label_mappings[attr][pred_class]
                    else:
                        pred_label = f"Class_{pred_class}"

                    results[attr] = {
                        'prediction': pred_label,
                        'confidence': conf,
                        'class_id': pred_class
                    }

            return results

        except Exception as e:
            return {"error": str(e)}

# Global classifier instance
classifier = None

def classify_image(image):
    """Gradio interface function"""
    global classifier

    if classifier is None:
        return "Error: Model not loaded. Please restart the app."

    try:
        results = classifier.predict(image)

        if "error" in results:
            return f"Prediction failed: {results['error']}"

        # Format results
        output = "PREDICTION RESULTS\n\n"

        for attr, result in results.items():
            status = "OK" if result['confidence'] > 0.5 else "LOW"
            output += f"{status} {attr.upper()}: {result['prediction']}\n"
            output += f"   Confidence: {result['confidence']:.3f}\n"
            output += f"   Class ID: {result['class_id']}\n\n"

        # Overall confidence
        confidences = [r['confidence'] for r in results.values()]
        avg_confidence = sum(confidences) / len(confidences)
        output += f"Average Confidence: {avg_confidence:.3f}"

        return output

    except Exception as e:
        return f"Error during prediction: {str(e)}"

def create_interface():
    """Create and launch the Gradio interface"""
    global classifier

    # Initialize classifier
    try:
        print("Loading model...")
        classifier = ArtifactClassifier()
        print("Model loaded successfully!")
    except Exception as e:
        print(f"Failed to load model: {e}")
        return

    # Create interface
    interface = gr.Interface(
        fn=classify_image,
        inputs=gr.Image(type="pil", label="Upload Artifact Image"),
        outputs=gr.Textbox(label="Classification Results", lines=10),
        title="Artifact Classification",
        description="""
        Upload an image of an archaeological artifact to get AI-powered classification!

        Features:
        - Object type identification (coin, vase, statue, etc.)
        - Material classification (gold, silver, pottery, etc.)
        - Confidence scores for each prediction
        - GPU-accelerated processing (if available)
        - Auto-downloads model from HuggingFace Hub
        - Completely standalone - no training code needed

        Supported formats: JPG, PNG, JPEG
        """,
        article="""
        How to use:
        1. Click "Upload Artifact Image" to select an image
        2. Click "Submit" to run classification
        3. View results with confidence scores

        Model trained on: British Museum artifact dataset
        Accuracy: ~71% for objects, ~62% for materials
        """,
        examples=[
            ["example_artifact.jpg"]  # Add example images if available
        ]
    )

    # Launch
    print("Starting Gradio interface...")
    interface.launch(
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,
        share=False,  # Set to True for public link
        debug=False
    )

if __name__ == "__main__":
    create_interface()