Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,15 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Gradio web interface for artifact classification
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import os
|
| 7 |
-
# Fix SSL issue on Windows
|
| 8 |
-
os.environ['SSL_CERT_FILE'] = ''
|
| 9 |
-
|
| 10 |
import gradio as gr
|
| 11 |
import torch
|
| 12 |
-
import torch.nn as nn
|
| 13 |
-
from torchvision import transforms
|
| 14 |
from PIL import Image
|
| 15 |
-
import
|
| 16 |
-
import os
|
| 17 |
-
import json
|
| 18 |
-
from pathlib import Path
|
| 19 |
-
|
| 20 |
-
# Define the model architecture directly (standalone)
|
| 21 |
-
import torch
|
| 22 |
import torch.nn as nn
|
| 23 |
from torchvision import models
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
class MultiOutputModel(nn.Module):
|
| 26 |
-
"""Multi-output model for artifact classification"""
|
| 27 |
|
| 28 |
def __init__(self, num_object_classes, num_material_classes, hidden_size=512):
|
| 29 |
super(MultiOutputModel, self).__init__()
|
|
@@ -34,21 +20,17 @@ class MultiOutputModel(nn.Module):
|
|
| 34 |
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
|
| 35 |
|
| 36 |
# Freeze early layers for transfer learning
|
| 37 |
-
for param in list(self.backbone.parameters())[:-
|
| 38 |
param.requires_grad = False
|
| 39 |
|
| 40 |
# Classification heads for each attribute
|
| 41 |
self.object_classifier = nn.Linear(2048, num_object_classes)
|
| 42 |
self.material_classifier = nn.Linear(2048, num_material_classes)
|
| 43 |
|
| 44 |
-
# Dropout for regularization
|
| 45 |
-
self.dropout = nn.Dropout(0.3)
|
| 46 |
-
|
| 47 |
def forward(self, x):
|
| 48 |
# Extract features using backbone
|
| 49 |
features = self.backbone(x)
|
| 50 |
features = features.view(features.size(0), -1)
|
| 51 |
-
features = self.dropout(features)
|
| 52 |
|
| 53 |
# Get predictions for each attribute
|
| 54 |
object_pred = self.object_classifier(features)
|
|
@@ -59,270 +41,211 @@ class MultiOutputModel(nn.Module):
|
|
| 59 |
'material': material_pred,
|
| 60 |
}
|
| 61 |
|
| 62 |
-
print("MultiOutputModel class defined directly in app (standalone)")
|
| 63 |
|
| 64 |
-
class ArtifactClassifier:
|
| 65 |
-
def __init__(self, model_path="train/outputs/best_model.pth"):
|
| 66 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 67 |
-
print(f"Using device: {self.device}")
|
| 68 |
|
| 69 |
-
# Try to load from local file first, then from HuggingFace
|
| 70 |
-
self.model = self.load_model(model_path)
|
| 71 |
-
self.model.to(self.device)
|
| 72 |
-
self.model.eval()
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 79 |
-
])
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
"
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
return self._create_model_with_defaults()
|
| 100 |
-
|
| 101 |
-
def _load_model_from_path(self, model_path):
|
| 102 |
-
"""Load model from local file"""
|
| 103 |
-
checkpoint = torch.load(model_path, map_location=self.device)
|
| 104 |
-
|
| 105 |
-
# Get label mappings to determine number of classes
|
| 106 |
-
label_mappings = checkpoint.get('label_mappings', {})
|
| 107 |
-
num_object_classes = len(label_mappings.get('object_name', {}))
|
| 108 |
-
num_material_classes = len(label_mappings.get('material', {}))
|
| 109 |
-
|
| 110 |
-
if num_object_classes == 0:
|
| 111 |
-
print("Warning: No label mappings found, using fallback class counts")
|
| 112 |
-
num_object_classes, num_material_classes = 1018, 192
|
| 113 |
-
|
| 114 |
-
# Create model
|
| 115 |
-
model = MultiOutputModel(num_object_classes, num_material_classes)
|
| 116 |
model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
"""Download and load model from HuggingFace Hub"""
|
| 122 |
-
try:
|
| 123 |
-
from huggingface_hub import hf_hub_download
|
| 124 |
|
| 125 |
-
print("Downloading model from HuggingFace Hub...")
|
| 126 |
-
model_file = hf_hub_download(
|
| 127 |
-
repo_id="SpyC0der77/artifact-classification-model",
|
| 128 |
-
filename="best_model.pth"
|
| 129 |
-
)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
raise
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
return model
|
| 150 |
-
|
| 151 |
-
def load_label_mappings(self):
|
| 152 |
-
"""Load label mappings for decoding predictions"""
|
| 153 |
-
# First try local model
|
| 154 |
-
model_path = "train/outputs/best_model.pth"
|
| 155 |
-
if os.path.exists(model_path):
|
| 156 |
-
try:
|
| 157 |
-
checkpoint = torch.load(model_path, map_location='cpu')
|
| 158 |
-
mappings = checkpoint.get('label_mappings', {})
|
| 159 |
-
|
| 160 |
-
# Create reverse mappings
|
| 161 |
-
reverse_mappings = {}
|
| 162 |
-
for attr, mapping in mappings.items():
|
| 163 |
-
reverse_mappings[attr] = {v: k for k, v in mapping.items()}
|
| 164 |
-
|
| 165 |
-
return reverse_mappings
|
| 166 |
-
except Exception as e:
|
| 167 |
-
print(f"Could not load local label mappings: {e}")
|
| 168 |
-
|
| 169 |
-
# Try to download from HuggingFace
|
| 170 |
-
try:
|
| 171 |
-
print("Downloading label mappings from HuggingFace...")
|
| 172 |
-
from huggingface_hub import hf_hub_download
|
| 173 |
-
|
| 174 |
-
mappings_file = hf_hub_download(
|
| 175 |
-
repo_id="SpyC0der77/artifact-classification-model",
|
| 176 |
-
filename="best_model.pth" # Contains the mappings
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
checkpoint = torch.load(mappings_file, map_location='cpu')
|
| 180 |
-
mappings = checkpoint.get('label_mappings', {})
|
| 181 |
-
|
| 182 |
-
# Create reverse mappings
|
| 183 |
-
reverse_mappings = {}
|
| 184 |
-
for attr, mapping in mappings.items():
|
| 185 |
-
reverse_mappings[attr] = {v: k for k, v in mapping.items()}
|
| 186 |
-
|
| 187 |
-
print(f"Loaded {len(reverse_mappings)} label mappings from HuggingFace")
|
| 188 |
-
return reverse_mappings
|
| 189 |
-
|
| 190 |
-
except Exception as e:
|
| 191 |
-
print(f"Could not load label mappings from HuggingFace: {e}")
|
| 192 |
-
|
| 193 |
-
return {}
|
| 194 |
-
|
| 195 |
-
def predict(self, image):
|
| 196 |
-
"""Make prediction on uploaded image"""
|
| 197 |
-
try:
|
| 198 |
-
# Convert to PIL Image if needed
|
| 199 |
-
if isinstance(image, np.ndarray):
|
| 200 |
-
image = Image.fromarray(image).convert('RGB')
|
| 201 |
-
elif not isinstance(image, Image.Image):
|
| 202 |
-
image = Image.open(image).convert('RGB')
|
| 203 |
-
|
| 204 |
-
# Apply transforms
|
| 205 |
-
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
| 206 |
-
|
| 207 |
-
# Make prediction
|
| 208 |
-
with torch.no_grad():
|
| 209 |
-
outputs = self.model(image_tensor)
|
| 210 |
-
|
| 211 |
-
# Process results
|
| 212 |
-
results = {}
|
| 213 |
-
for attr in ['object_name', 'material']:
|
| 214 |
-
if attr in outputs:
|
| 215 |
-
# Get probabilities and prediction
|
| 216 |
-
probs = torch.softmax(outputs[attr], dim=1)
|
| 217 |
-
confidence, predicted_idx = torch.max(probs, dim=1)
|
| 218 |
-
|
| 219 |
-
pred_class = predicted_idx.item()
|
| 220 |
-
conf = confidence.item()
|
| 221 |
-
|
| 222 |
-
# Convert to label name
|
| 223 |
-
if attr in self.label_mappings and pred_class in self.label_mappings[attr]:
|
| 224 |
-
pred_label = self.label_mappings[attr][pred_class]
|
| 225 |
-
else:
|
| 226 |
-
pred_label = f"Class_{pred_class}"
|
| 227 |
-
|
| 228 |
-
results[attr] = {
|
| 229 |
-
'prediction': pred_label,
|
| 230 |
-
'confidence': conf,
|
| 231 |
-
'class_id': pred_class
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
-
return results
|
| 235 |
-
|
| 236 |
-
except Exception as e:
|
| 237 |
-
return {"error": str(e)}
|
| 238 |
-
|
| 239 |
-
# Global classifier instance
|
| 240 |
-
classifier = None
|
| 241 |
-
|
| 242 |
-
def classify_image(image):
|
| 243 |
-
"""Gradio interface function"""
|
| 244 |
-
global classifier
|
| 245 |
-
|
| 246 |
-
if classifier is None:
|
| 247 |
-
return "Error: Model not loaded. Please restart the app."
|
| 248 |
|
| 249 |
-
|
| 250 |
-
results = classifier.predict(image)
|
| 251 |
|
| 252 |
-
if "error" in results:
|
| 253 |
-
return f"Prediction failed: {results['error']}"
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
output += f"{status} {attr.upper()}: {result['prediction']}\n"
|
| 261 |
-
output += f" Confidence: {result['confidence']:.3f}\n"
|
| 262 |
-
output += f" Class ID: {result['class_id']}\n\n"
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
avg_confidence = sum(confidences) / len(confidences)
|
| 267 |
-
output += f"Average Confidence: {avg_confidence:.3f}"
|
| 268 |
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
except Exception as e:
|
| 272 |
-
return f"Error
|
| 273 |
|
| 274 |
-
def
|
| 275 |
-
"""
|
| 276 |
-
global
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
# Initialize classifier
|
| 279 |
try:
|
| 280 |
-
|
| 281 |
-
classifier = ArtifactClassifier()
|
| 282 |
print("Model loaded successfully!")
|
|
|
|
|
|
|
| 283 |
except Exception as e:
|
| 284 |
-
print(f"
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
- Completely standalone - no training code needed
|
| 303 |
-
|
| 304 |
-
Supported formats: JPG, PNG, JPEG
|
| 305 |
-
""",
|
| 306 |
-
article="""
|
| 307 |
-
How to use:
|
| 308 |
-
1. Upload an artifact image using the file picker
|
| 309 |
-
2. Click "Submit" to run classification
|
| 310 |
-
3. View results with confidence scores and predictions
|
| 311 |
-
|
| 312 |
-
Model trained on: British Museum artifact dataset
|
| 313 |
-
Accuracy: ~71% for objects, ~62% for materials
|
| 314 |
-
""",
|
| 315 |
-
examples=[]
|
| 316 |
)
|
| 317 |
|
| 318 |
-
#
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
)
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
if __name__ == "__main__":
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
+
import torchvision.transforms as transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import torch.nn as nn
|
| 6 |
from torchvision import models
|
| 7 |
+
from typing import Dict, Tuple
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
|
| 11 |
class MultiOutputModel(nn.Module):
|
| 12 |
+
"""Multi-output model for artifact classification (matches UI)"""
|
| 13 |
|
| 14 |
def __init__(self, num_object_classes, num_material_classes, hidden_size=512):
|
| 15 |
super(MultiOutputModel, self).__init__()
|
|
|
|
| 20 |
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
|
| 21 |
|
| 22 |
# Freeze early layers for transfer learning
|
| 23 |
+
for param in list(self.backbone.parameters())[:-4]: # Unfreeze more layers for better fine-tuning
|
| 24 |
param.requires_grad = False
|
| 25 |
|
| 26 |
# Classification heads for each attribute
|
| 27 |
self.object_classifier = nn.Linear(2048, num_object_classes)
|
| 28 |
self.material_classifier = nn.Linear(2048, num_material_classes)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
def forward(self, x):
|
| 31 |
# Extract features using backbone
|
| 32 |
features = self.backbone(x)
|
| 33 |
features = features.view(features.size(0), -1)
|
|
|
|
| 34 |
|
| 35 |
# Get predictions for each attribute
|
| 36 |
object_pred = self.object_classifier(features)
|
|
|
|
| 41 |
'material': material_pred,
|
| 42 |
}
|
| 43 |
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
def load_model(model_path: str) -> Tuple[torch.nn.Module, Dict[str, Dict[int, str]]]:
|
| 48 |
+
"""Load the model from checkpoint and return model and label mappings."""
|
| 49 |
+
print(f"Loading model from {model_path}...")
|
| 50 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Get label mappings to determine number of classes
|
| 53 |
+
label_mappings = checkpoint.get('label_mappings', {})
|
| 54 |
+
num_object_classes = len(label_mappings.get('object_name', {}))
|
| 55 |
+
num_material_classes = len(label_mappings.get('material', {}))
|
| 56 |
|
| 57 |
+
if num_object_classes == 0:
|
| 58 |
+
print("Warning: No label mappings found, using fallback class counts")
|
| 59 |
+
num_object_classes, num_material_classes = 1018, 192
|
| 60 |
+
|
| 61 |
+
# Check model type based on state_dict keys to determine which architecture to use
|
| 62 |
+
model_state_dict = checkpoint.get('model_state_dict', {})
|
| 63 |
+
state_dict_keys = set(model_state_dict.keys())
|
| 64 |
+
|
| 65 |
+
# Only support v1 model (MultiOutputModel) with ResNet backbone
|
| 66 |
+
print(f"Loading v1 model (MultiOutputModel) with ResNet backbone")
|
| 67 |
+
model = MultiOutputModel(num_object_classes, num_material_classes)
|
| 68 |
+
|
| 69 |
+
# Load state dict
|
| 70 |
+
if 'model_state_dict' in checkpoint:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 72 |
+
else:
|
| 73 |
+
print("Warning: No model_state_dict found in checkpoint")
|
| 74 |
|
| 75 |
+
# Create reverse mappings (id2label)
|
| 76 |
+
reverse_mappings = {}
|
| 77 |
+
for attr, mapping in label_mappings.items():
|
| 78 |
+
reverse_mappings[attr] = {int(v): str(k) for k, v in mapping.items()}
|
| 79 |
+
print(f"Loaded {attr} mappings: {len(reverse_mappings[attr])} classes")
|
| 80 |
|
| 81 |
+
return model, reverse_mappings
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
def run_inference(model: torch.nn.Module, pixel_values: torch.Tensor, device: str) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 85 |
+
"""Run inference on pixel_values and return predictions and confidences for both object_name and material."""
|
| 86 |
+
model.eval()
|
| 87 |
+
model.to(device)
|
| 88 |
+
pixel_values = pixel_values.to(device)
|
| 89 |
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
outputs = model(pixel_values)
|
|
|
|
| 92 |
|
| 93 |
+
# Handle different output formats
|
| 94 |
+
if isinstance(outputs, dict):
|
| 95 |
+
# Multi-output model format
|
| 96 |
+
if 'object_name' in outputs and 'material' in outputs:
|
| 97 |
+
logits_obj = outputs['object_name']
|
| 98 |
+
logits_mat = outputs['material']
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError("Expected 'object_name' and 'material' in model outputs")
|
| 101 |
+
else:
|
| 102 |
+
raise ValueError("Expected dict output with 'object_name' and 'material' keys")
|
| 103 |
|
| 104 |
+
preds_obj = torch.argmax(logits_obj, dim=-1)
|
| 105 |
+
probs_obj = torch.softmax(logits_obj, dim=-1)
|
| 106 |
+
max_probs_obj = torch.max(probs_obj, dim=-1)[0]
|
| 107 |
|
| 108 |
+
preds_mat = torch.argmax(logits_mat, dim=-1)
|
| 109 |
+
probs_mat = torch.softmax(logits_mat, dim=-1)
|
| 110 |
+
max_probs_mat = torch.max(probs_mat, dim=-1)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
return preds_obj.cpu(), max_probs_obj.cpu(), preds_mat.cpu(), max_probs_mat.cpu()
|
|
|
|
| 113 |
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# Global variables for model and label mappings
|
| 116 |
+
model = None
|
| 117 |
+
label_mappings = None
|
| 118 |
+
device = None
|
| 119 |
+
|
| 120 |
+
def preprocess_image(image: Image.Image) -> torch.Tensor:
|
| 121 |
+
"""Preprocess image for model inference."""
|
| 122 |
+
# Define transforms
|
| 123 |
+
transform = transforms.Compose([
|
| 124 |
+
transforms.Resize(256),
|
| 125 |
+
transforms.CenterCrop(224),
|
| 126 |
+
transforms.ToTensor(),
|
| 127 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 128 |
+
])
|
| 129 |
+
|
| 130 |
+
# Apply transforms
|
| 131 |
+
image = image.convert('RGB')
|
| 132 |
+
tensor = transform(image).unsqueeze(0) # Add batch dimension
|
| 133 |
+
|
| 134 |
+
return tensor
|
| 135 |
+
|
| 136 |
+
def predict_artifact(image: Image.Image) -> tuple[str, float, str, float]:
|
| 137 |
+
"""Predict object and material from image."""
|
| 138 |
+
global model, label_mappings, device
|
| 139 |
|
| 140 |
+
if model is None:
|
| 141 |
+
raise ValueError("Model not loaded. Please restart the application.")
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
# Preprocess image
|
| 144 |
+
pixel_values = preprocess_image(image)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
# Run inference
|
| 147 |
+
preds_obj, confs_obj, preds_mat, confs_mat = run_inference(model, pixel_values, device)
|
| 148 |
+
|
| 149 |
+
# Get predictions
|
| 150 |
+
object_pred_id = preds_obj[0].item()
|
| 151 |
+
material_pred_id = preds_mat[0].item()
|
| 152 |
+
object_conf = confs_obj[0].item()
|
| 153 |
+
material_conf = confs_mat[0].item()
|
| 154 |
+
|
| 155 |
+
# Convert IDs to labels
|
| 156 |
+
object_name = label_mappings['object_name'].get(object_pred_id, f"class_{object_pred_id}")
|
| 157 |
+
material_name = label_mappings['material'].get(material_pred_id, f"class_{material_pred_id}")
|
| 158 |
+
|
| 159 |
+
return object_name, object_conf, material_name, material_conf
|
| 160 |
+
|
| 161 |
+
def gradio_predict(image):
|
| 162 |
+
"""Gradio interface function."""
|
| 163 |
+
if image is None:
|
| 164 |
+
return "Please upload an image", "", "", ""
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
object_name, object_conf, material_name, material_conf = predict_artifact(image)
|
| 168 |
+
|
| 169 |
+
# Format results
|
| 170 |
+
object_result = f"**{object_name}** ({object_conf:.1%} confidence)"
|
| 171 |
+
material_result = f"**{material_name}** ({material_conf:.1%} confidence)"
|
| 172 |
+
|
| 173 |
+
return object_result, material_result, f"{object_conf:.3f}", f"{material_conf:.3f}"
|
| 174 |
|
| 175 |
except Exception as e:
|
| 176 |
+
return f"Error: {str(e)}", "", "", ""
|
| 177 |
|
| 178 |
+
def load_model_on_startup():
|
| 179 |
+
"""Load model when the application starts."""
|
| 180 |
+
global model, label_mappings, device
|
| 181 |
+
|
| 182 |
+
# Set device
|
| 183 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 184 |
+
|
| 185 |
+
# Load model
|
| 186 |
+
model_path = "model/v1/best_model.pth"
|
| 187 |
+
if not os.path.exists(model_path):
|
| 188 |
+
print(f"Warning: Model file not found at {model_path}")
|
| 189 |
+
print("Please ensure the model file exists before running the application.")
|
| 190 |
+
return
|
| 191 |
|
|
|
|
| 192 |
try:
|
| 193 |
+
model, label_mappings = load_model(model_path)
|
|
|
|
| 194 |
print("Model loaded successfully!")
|
| 195 |
+
print(f"Object classes: {len(label_mappings.get('object_name', {}))}")
|
| 196 |
+
print(f"Material classes: {len(label_mappings.get('material', {}))}")
|
| 197 |
except Exception as e:
|
| 198 |
+
print(f"Error loading model: {e}")
|
| 199 |
+
|
| 200 |
+
# Load model on startup
|
| 201 |
+
load_model_on_startup()
|
| 202 |
+
|
| 203 |
+
# Create Gradio interface
|
| 204 |
+
with gr.Blocks(title="Artifact Classification v1", theme=gr.themes.Soft()) as demo:
|
| 205 |
+
gr.Markdown("# 🏺 Artifact Classification Model v1")
|
| 206 |
+
gr.Markdown("Upload an image of an artifact to classify its **object type** and **material composition**.")
|
| 207 |
+
|
| 208 |
+
with gr.Row():
|
| 209 |
+
with gr.Column():
|
| 210 |
+
image_input = gr.Image(label="Upload Artifact Image", type="pil")
|
| 211 |
+
submit_btn = gr.Button("🔍 Classify Artifact", variant="primary")
|
| 212 |
|
| 213 |
+
with gr.Column():
|
| 214 |
+
gr.Markdown("### 📊 Classification Results")
|
| 215 |
+
|
| 216 |
+
object_output = gr.Markdown(label="**Object Type**")
|
| 217 |
+
material_output = gr.Markdown(label="**Material**")
|
| 218 |
+
|
| 219 |
+
with gr.Accordion("📈 Confidence Scores", open=False):
|
| 220 |
+
object_conf = gr.Textbox(label="Object Confidence", interactive=False)
|
| 221 |
+
material_conf = gr.Textbox(label="Material Confidence", interactive=False)
|
| 222 |
+
|
| 223 |
+
# Connect the interface
|
| 224 |
+
submit_btn.click(
|
| 225 |
+
fn=gradio_predict,
|
| 226 |
+
inputs=image_input,
|
| 227 |
+
outputs=[object_output, material_output, object_conf, material_conf]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
+
# Example images
|
| 231 |
+
gr.Examples(
|
| 232 |
+
examples=[
|
| 233 |
+
# You can add example image paths here if available
|
| 234 |
+
],
|
| 235 |
+
inputs=image_input,
|
| 236 |
+
outputs=[object_output, material_output, object_conf, material_conf],
|
| 237 |
+
fn=gradio_predict,
|
| 238 |
+
cache_examples=False
|
| 239 |
)
|
| 240 |
|
| 241 |
+
gr.Markdown("""
|
| 242 |
+
### ℹ️ About
|
| 243 |
+
This model uses a ResNet-50 backbone to classify museum artifacts into object types (vase, statue, pottery, etc.)
|
| 244 |
+
and material compositions (ceramic, bronze, stone, etc.).
|
| 245 |
+
|
| 246 |
+
**Model**: MultiOutputModel with ResNet-50 backbone
|
| 247 |
+
**Training Data**: Oriental Museum artifacts dataset
|
| 248 |
+
""")
|
| 249 |
+
|
| 250 |
if __name__ == "__main__":
|
| 251 |
+
demo.launch()
|