Spaces:
Sleeping
Sleeping
File size: 19,262 Bytes
dfafaa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import datetime as dt
import random
from pathlib import Path
import os
import hashlib
import requests
import json
import numpy as np
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
import torchvision.transforms as T
from PIL import Image
from torchcam.methods import GradCAM, GradCAMpp
from torchcam.utils import overlay_mask
from torchvision.datasets import CIFAR10, MNIST, FashionMNIST
# Persist selected checkpoint across reruns
if "ckpt_path" not in st.session_state:
st.session_state["ckpt_path"] = None
@st.cache_data(show_spinner=True)
def download_release_asset(url: str, dest_dir: str = "saved_checkpoints") -> str:
"""Download a remote checkpoint to dest_dir and return its local path.
Cached so subsequent reruns won't redownload.
"""
Path(dest_dir).mkdir(parents=True, exist_ok=True)
url_hash = hashlib.sha256(url.encode("utf-8")).hexdigest()[:16]
fname = Path(url).name or f"asset_{url_hash}.ckpt"
if not fname.endswith(".ckpt"):
fname = f"{fname}.ckpt"
local_path = Path(dest_dir) / f"{url_hash}_{fname}"
if local_path.exists() and local_path.stat().st_size > 0:
return str(local_path)
with requests.get(url, stream=True, timeout=120) as r:
r.raise_for_status()
with open(local_path, "wb") as f:
for chunk in r.iter_content(chunk_size=1024 * 1024):
if chunk:
f.write(chunk)
return str(local_path)
def load_release_presets() -> dict:
"""Load release preset URLs from multiple sources.
Order: Streamlit secrets β .streamlit/presets.json β presets.json β env var RELEASE_CKPTS_JSON.
Returns a dict name -> url. Safe if nothing is configured.
"""
# 1) Streamlit secrets
try:
if hasattr(st, "secrets") and "release_checkpoints" in st.secrets:
# Convert to plain dict in case it's a Secrets object
return dict(st.secrets["release_checkpoints"]) # type: ignore[index]
except Exception:
pass
# 2) Local JSON files for dev
for rel in (".streamlit/presets.json", "presets.json"):
p = Path(rel)
if p.exists():
try:
with open(p, "r", encoding="utf-8") as f:
data = json.load(f)
# Either the file is a mapping directly, or has a top-level key
if isinstance(data, dict) and data:
if "release_checkpoints" in data and isinstance(data["release_checkpoints"], dict):
return dict(data["release_checkpoints"]) # nested
return dict(data) # flat mapping
except Exception:
pass
# 3) Environment variable containing JSON mapping
env_json = os.environ.get("RELEASE_CKPTS_JSON", "").strip()
if env_json:
try:
data = json.loads(env_json)
if isinstance(data, dict):
return dict(data)
except Exception:
pass
return {}
# ---------- Small utilities ----------
def get_device(choice="auto"):
if choice == "cpu":
return "cpu"
if choice == "cuda":
return "cuda"
return "cuda" if torch.cuda.is_available() else "cpu"
def find_latest_best_ckpt():
ckpts = sorted(
Path("checkpoints").rglob("best.ckpt"), key=lambda p: p.stat().st_mtime
)
return ckpts[-1] if ckpts else None
def denorm_to_pil(x, mean, std):
"""
x: torch.Tensor CxHxW (normalized), mean/std lists
returns PIL.Image (RGB)
"""
x = x.detach().cpu().clone()
if len(mean) == 1:
# grayscale
m, s = float(mean[0]), float(std[0])
x = x * s + m # de-normalize
x = x.clamp(0, 1)
# convert to RGB for overlay convenience
pil = T.ToPILImage()(x)
pil = pil.convert("RGB")
return pil
else:
mean = torch.tensor(mean)[:, None, None]
std = torch.tensor(std)[:, None, None]
x = x * std + mean
x = x.clamp(0, 1)
return T.ToPILImage()(x)
DATASET_CLASSES = {
"fashion-mnist": [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
],
"mnist": [str(i) for i in range(10)],
"cifar10": [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
],
}
@st.cache_resource
def load_raw_dataset(name: str, root="data"):
"""Load the test split with ToTensor() only (for preview)."""
tt = T.ToTensor()
if name == "fashion-mnist":
ds = FashionMNIST(root=root, train=False, download=True, transform=tt)
elif name == "mnist":
ds = MNIST(root=root, train=False, download=True, transform=tt)
elif name == "cifar10":
ds = CIFAR10(root=root, train=False, download=True, transform=tt)
else:
raise ValueError(f"Unknown dataset: {name}")
classes = getattr(ds, "classes", None) or [str(i) for i in range(10)]
return ds, classes
def pil_from_tensor(img_tensor, grayscale_to_rgb=True):
pil = T.ToPILImage()(img_tensor)
if grayscale_to_rgb and img_tensor.ndim == 3 and img_tensor.shape[0] == 1:
pil = pil.convert("RGB")
return pil
@st.cache_data(ttl=5, show_spinner=False)
def list_ckpts(root_dir: str, recursive: bool = True, filter: str = ""):
"""Return (labels, paths) sorted by mtime desc."""
root = Path(root_dir)
if not root.exists():
return [], []
files = sorted(
(root.rglob("*.ckpt") if recursive else root.glob("*.ckpt")),
key=lambda p: p.stat().st_mtime,
reverse=True,
)
files = [p for p in files if filter in str(p)]
labels = []
for p in files:
rel = p.relative_to(root)
mtime = dt.datetime.fromtimestamp(p.stat().st_mtime).strftime("%Y-%m-%d %H:%M")
labels.append(f"{rel} β’ {mtime}")
return labels, [str(p) for p in files]
# ---------- Your SmallCNN (for FMNIST) ----------
class SmallCNN(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc = nn.Linear(64 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = torch.flatten(x, 1)
return self.fc(x)
# ---------- Load model + meta from checkpoint ----------
def load_model_from_ckpt(ckpt_path: Path, device: str):
ckpt = torch.load(str(ckpt_path), map_location=device)
classes = ckpt.get("classes", None)
meta = ckpt.get("meta", {})
num_classes = len(classes) if classes else 10
model_name = meta.get("model_name", "smallcnn")
if model_name == "smallcnn":
model = SmallCNN(num_classes=num_classes).to(device)
default_target_layer = "conv2"
elif model_name == "resnet18_cifar":
m = tvm.resnet18(weights=None)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
m.fc = nn.Linear(m.fc.in_features, num_classes)
model = m.to(device)
default_target_layer = "layer4"
elif model_name == "resnet18_imagenet":
try:
w = tvm.ResNet18_Weights.IMAGENET1K_V1
except Exception:
w = None
m = tvm.resnet18(weights=w)
m.fc = nn.Linear(m.fc.in_features, num_classes)
model = m.to(device)
default_target_layer = "layer4"
else:
raise ValueError(f"Unknown model_name in ckpt: {model_name}")
model.load_state_dict(ckpt["model_state"])
model.eval()
# ensure meta has defaults
meta.setdefault("default_target_layer", default_target_layer)
return model, classes, meta
def build_transform_from_meta(meta):
img_size = int(meta.get("img_size", 28))
mean = meta.get("mean", [0.2860]) # FMNIST fallback
std = meta.get("std", [0.3530])
if len(mean) == 1:
return T.Compose(
[
T.Grayscale(num_output_channels=1),
T.Resize((img_size, img_size)),
T.ToTensor(),
T.Normalize(mean, std),
]
)
else:
return T.Compose(
[
T.Resize((img_size, img_size)),
T.ToTensor(),
T.Normalize(mean, std),
]
)
def predict_and_cam(model, x, device, target_layer, topk=3, method="Grad-CAM"):
"""
x: Tensor [1,C,H,W] normalized
returns: list of dicts: {rank, class_index, prob, cam_tensor(H,W)}
"""
cam_cls = GradCAM if method == "Grad-CAM" else GradCAMpp
cam_extractor = cam_cls(model, target_layer=target_layer)
logits = model(x.to(device))
probs = torch.softmax(logits, dim=1)[0].detach().cpu()
top_vals, top_idxs = probs.topk(topk)
results = []
for rank, (p, idx) in enumerate(zip(top_vals.tolist(), top_idxs.tolist())):
retain = rank < topk - 1
cams = cam_extractor(idx, logits, retain_graph=retain) # list
cam = cams[0].detach().cpu() # [H,W] at feature-map resolution
results.append(
{"rank": rank + 1, "class_index": int(idx), "prob": float(p), "cam": cam}
)
return results, probs
def overlay_pil(base_pil_rgb: Image.Image, cam_tensor, alpha=0.5):
# cam_tensor: torch.Tensor HxW in [0,1] (we'll min-max it)
cam = cam_tensor.clone()
cam -= cam.min()
cam = cam / (cam.max() + 1e-8)
heat = T.ToPILImage()(cam) # single-channel PIL
return overlay_mask(base_pil_rgb, heat, alpha=alpha)
# ---------- UI ----------
st.set_page_config(page_title="Grad-CAM Demo", page_icon="π", layout="wide")
st.title("π Grad-CAM Demo β upload an image, get top-k + heatmaps")
# Sidebar: checkpoint + options
with st.sidebar:
st.header("Settings")
ckpt_path = st.session_state.get("ckpt_path")
st.subheader("Checkpoints")
# Remote download (presets or URL), saved automatically to saved_checkpoints/
presets = load_release_presets()
preset_names = list(presets.keys())
preset_sel = st.selectbox("Preset (GitHub Releases)", options=["(none)"] + preset_names, index=0) if preset_names else "(none)"
url_input = st.text_input("Or paste asset URL", value="")
if st.button("Download checkpoint", use_container_width=True):
url = presets.get(preset_sel, "") if preset_sel != "(none)" else url_input.strip()
if not url:
st.warning("Provide a preset or paste a URL")
else:
try:
path_dl = download_release_asset(url, dest_dir="saved_checkpoints")
st.success(f"Downloaded to: {path_dl}")
ckpt_path = path_dl
st.session_state["ckpt_path"] = ckpt_path
st.cache_data.clear()
except Exception as e:
st.error(f"Download failed: {e}")
# Upload a user-provided .ckpt directly in the online app
uploaded_ckpt = st.file_uploader("Upload checkpoint (.ckpt)", type=["ckpt"], accept_multiple_files=False)
if uploaded_ckpt is not None and st.button("Use uploaded checkpoint", use_container_width=True):
try:
Path("saved_checkpoints").mkdir(parents=True, exist_ok=True)
raw = uploaded_ckpt.read()
content_hash = hashlib.sha256(raw).hexdigest()[:16]
base_name = Path(uploaded_ckpt.name).name
if not base_name.endswith(".ckpt"):
base_name = f"{base_name}.ckpt"
local_path = Path("saved_checkpoints") / f"{content_hash}_{base_name}"
with open(local_path, "wb") as f:
f.write(raw)
ckpt_path = str(local_path)
st.session_state["ckpt_path"] = ckpt_path
st.success(f"Uploaded to: {ckpt_path}")
st.cache_data.clear()
except Exception as e:
st.error(f"Upload failed: {e}")
st.caption(f"Selected: {ckpt_path}")
with st.expander("Checkpoint meta preview", expanded=False):
try:
if ckpt_path:
m, c, meta_preview = load_model_from_ckpt(Path(ckpt_path), device="cpu")
st.json(
{
"dataset": meta_preview.get("dataset"),
"model_name": meta_preview.get("model_name"),
"img_size": meta_preview.get("img_size"),
"target_layer": meta_preview.get("default_target_layer"),
}
)
else:
st.info("No checkpoint selected yet.")
except Exception as e:
st.info(f"Could not read meta: {e}")
method = st.selectbox("CAM method", ["Grad-CAM", "Grad-CAM++"], index=0)
topk = st.slider("Top-k classes", min_value=1, max_value=10, value=3, step=1)
alpha = st.slider(
"Overlay alpha", min_value=0.1, max_value=0.9, value=0.5, step=0.05
)
# Load model/meta
if not ckpt_path or not Path(ckpt_path).exists():
st.info(
"First choose a checkpoint:\n"
"- Preset: pick from the list and click 'Download checkpoint'\n"
"- URL: paste a direct .ckpt URL and click 'Download checkpoint'\n"
"- Upload: select a .ckpt and click 'Use uploaded checkpoint'\n\n"
"After a checkpoint is selected, upload an image or use the sample picker to see predictions and Grad-CAM overlays."
)
st.stop()
device = "cpu"
model, classes, meta = load_model_from_ckpt(Path(ckpt_path), device)
tf = build_transform_from_meta(meta)
target_layer = meta.get("default_target_layer", "conv2")
# Main: uploader
# Main: uploader OR dataset sample
st.subheader("1) Provide an image")
uploaded = st.file_uploader(
"Upload PNG/JPG (or pick a sample below)", type=["png", "jpg", "jpeg"]
)
with st.expander("β¦or pick a sample from this model's dataset", expanded=False):
ds_default = meta.get("dataset", "fashion-mnist")
ds, ds_classes = load_raw_dataset(ds_default, root="data")
targets = np.array(getattr(ds, "targets", [ds[i][1] for i in range(len(ds))]))
# --- class filter (persisted) ---
class_opts = ["(any)"] + list(ds_classes)
class_sel = st.selectbox("Class filter", options=class_opts, index=0, key="class_sel")
if class_sel == "(any)":
filtered_idx = np.arange(len(ds))
else:
class_id = ds_classes.index(class_sel)
filtered_idx = np.nonzero(targets == class_id)[0]
# --- ensure we have a session index and keep it valid ---
if "sample_idx" not in st.session_state:
st.session_state["sample_idx"] = 0
# clamp when filter changes or dataset length is small
if len(filtered_idx) > 0:
st.session_state["sample_idx"] = int(
np.clip(st.session_state["sample_idx"], 0, len(filtered_idx) - 1)
)
if len(filtered_idx) == 0:
st.info("No samples found for this class.")
sample_img = None
else:
col_l, col_r = st.columns([2, 1])
with col_r:
picked = st.button("Pick random", use_container_width=True, key="btn_pick_random")
if picked:
# IMPORTANT: update session_state BEFORE creating the slider
cur = st.session_state["sample_idx"]
if len(filtered_idx) > 1:
new_idx = random.randrange(len(filtered_idx) - 1)
if new_idx >= cur:
new_idx += 1
else:
new_idx = 0
st.session_state["sample_idx"] = new_idx
# no st.rerun() needed; the app will rerun after the button
with col_l:
# Now instantiate the slider (AFTER any state changes above)
st.slider(
"Pick index (within filtered samples)",
0, max(0, len(filtered_idx) - 1),
key="sample_idx", # same key as the state we set above
)
raw_idx = int(filtered_idx[st.session_state["sample_idx"]])
img_tensor, label = ds[raw_idx]
sample_img = pil_from_tensor(img_tensor, grayscale_to_rgb=True)
st.image(
sample_img,
caption=f"Sample β’ {ds_default} β’ class={ds_classes[label]} β’ idx={raw_idx}",
width=160,
use_container_width=False,
)
# Decide the input image used downstream
if uploaded is not None:
pil = Image.open(uploaded).convert("RGB")
elif "sample_img" in locals() and sample_img is not None:
pil = sample_img
else:
st.info("Upload an image or open the sample picker above.")
st.stop()
col_in, col_cfg = st.columns([2, 1])
with col_in:
if uploaded:
pil = Image.open(uploaded).convert("RGB")
elif sample_img is not None:
pil = sample_img
else:
st.info("Upload an image or check 'Use a sample image'.")
st.stop()
st.image(pil, caption="Input", use_container_width=True)
with col_cfg:
st.markdown("**Model meta**")
st.json(
{
"dataset": meta.get("dataset"),
"model_name": meta.get("model_name"),
"img_size": meta.get("img_size"),
"target_layer": target_layer,
"mean": meta.get("mean"),
"std": meta.get("std"),
"classes": (
classes
if classes and len(classes) <= 10
else f"{len(classes) if classes else 'N/A'} classes"
),
}
)
# Prepare tensor + denormalized PIL base for overlay
x = tf(pil) # CxHxW normalized
x_batched = x.unsqueeze(0) # 1xCxHxW
base_pil = denorm_to_pil(x, meta.get("mean", [0.2860]), meta.get("std", [0.3530]))
# Predict + CAM
with st.spinner("Running inference + Grad-CAM..."):
try:
cam_results, probs = predict_and_cam(
model, x_batched, device, target_layer, topk=topk, method=method
)
except Exception as e:
st.error(
f"Grad-CAM failed. Target layer likely incorrect."
f"\nLayer: {target_layer}\nError: {e}"
)
st.stop()
# Top-k table
st.subheader("2) Top-k predictions")
rows = []
for r in cam_results:
name = classes[r["class_index"]] if classes else str(r["class_index"])
rows.append(
{
"rank": r["rank"],
"class": name,
"index": r["class_index"],
"prob": round(r["prob"], 4),
}
)
st.dataframe(rows, use_container_width=True)
# Overlays
st.subheader("3) Grad-CAM overlays")
cols = st.columns(len(cam_results))
for c, r in zip(cols, cam_results):
name = classes[r["class_index"]] if classes else str(r["class_index"])
ov = overlay_pil(base_pil, r["cam"], alpha=alpha)
with c:
st.image(
ov,
caption=f"Top{r['rank']}: {name} ({r['prob']:.3f})",
use_container_width=True,
)
|