import datetime as dt import random from pathlib import Path import os import hashlib import requests import json import numpy as np import streamlit as st import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as tvm import torchvision.transforms as T from PIL import Image from torchcam.methods import GradCAM, GradCAMpp from torchcam.utils import overlay_mask from torchvision.datasets import CIFAR10, MNIST, FashionMNIST # Persist selected checkpoint across reruns if "ckpt_path" not in st.session_state: st.session_state["ckpt_path"] = None @st.cache_data(show_spinner=True) def download_release_asset(url: str, dest_dir: str = "saved_checkpoints") -> str: """Download a remote checkpoint to dest_dir and return its local path. Cached so subsequent reruns won't redownload. """ Path(dest_dir).mkdir(parents=True, exist_ok=True) url_hash = hashlib.sha256(url.encode("utf-8")).hexdigest()[:16] fname = Path(url).name or f"asset_{url_hash}.ckpt" if not fname.endswith(".ckpt"): fname = f"{fname}.ckpt" local_path = Path(dest_dir) / f"{url_hash}_{fname}" if local_path.exists() and local_path.stat().st_size > 0: return str(local_path) with requests.get(url, stream=True, timeout=120) as r: r.raise_for_status() with open(local_path, "wb") as f: for chunk in r.iter_content(chunk_size=1024 * 1024): if chunk: f.write(chunk) return str(local_path) def load_release_presets() -> dict: """Load release preset URLs from multiple sources. Order: Streamlit secrets β†’ .streamlit/presets.json β†’ presets.json β†’ env var RELEASE_CKPTS_JSON. Returns a dict name -> url. Safe if nothing is configured. """ # 1) Streamlit secrets try: if hasattr(st, "secrets") and "release_checkpoints" in st.secrets: # Convert to plain dict in case it's a Secrets object return dict(st.secrets["release_checkpoints"]) # type: ignore[index] except Exception: pass # 2) Local JSON files for dev for rel in (".streamlit/presets.json", "presets.json"): p = Path(rel) if p.exists(): try: with open(p, "r", encoding="utf-8") as f: data = json.load(f) # Either the file is a mapping directly, or has a top-level key if isinstance(data, dict) and data: if "release_checkpoints" in data and isinstance(data["release_checkpoints"], dict): return dict(data["release_checkpoints"]) # nested return dict(data) # flat mapping except Exception: pass # 3) Environment variable containing JSON mapping env_json = os.environ.get("RELEASE_CKPTS_JSON", "").strip() if env_json: try: data = json.loads(env_json) if isinstance(data, dict): return dict(data) except Exception: pass return {} # ---------- Small utilities ---------- def get_device(choice="auto"): if choice == "cpu": return "cpu" if choice == "cuda": return "cuda" return "cuda" if torch.cuda.is_available() else "cpu" def find_latest_best_ckpt(): ckpts = sorted( Path("checkpoints").rglob("best.ckpt"), key=lambda p: p.stat().st_mtime ) return ckpts[-1] if ckpts else None def denorm_to_pil(x, mean, std): """ x: torch.Tensor CxHxW (normalized), mean/std lists returns PIL.Image (RGB) """ x = x.detach().cpu().clone() if len(mean) == 1: # grayscale m, s = float(mean[0]), float(std[0]) x = x * s + m # de-normalize x = x.clamp(0, 1) # convert to RGB for overlay convenience pil = T.ToPILImage()(x) pil = pil.convert("RGB") return pil else: mean = torch.tensor(mean)[:, None, None] std = torch.tensor(std)[:, None, None] x = x * std + mean x = x.clamp(0, 1) return T.ToPILImage()(x) DATASET_CLASSES = { "fashion-mnist": [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ], "mnist": [str(i) for i in range(10)], "cifar10": [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ], } @st.cache_resource def load_raw_dataset(name: str, root="data"): """Load the test split with ToTensor() only (for preview).""" tt = T.ToTensor() if name == "fashion-mnist": ds = FashionMNIST(root=root, train=False, download=True, transform=tt) elif name == "mnist": ds = MNIST(root=root, train=False, download=True, transform=tt) elif name == "cifar10": ds = CIFAR10(root=root, train=False, download=True, transform=tt) else: raise ValueError(f"Unknown dataset: {name}") classes = getattr(ds, "classes", None) or [str(i) for i in range(10)] return ds, classes def pil_from_tensor(img_tensor, grayscale_to_rgb=True): pil = T.ToPILImage()(img_tensor) if grayscale_to_rgb and img_tensor.ndim == 3 and img_tensor.shape[0] == 1: pil = pil.convert("RGB") return pil @st.cache_data(ttl=5, show_spinner=False) def list_ckpts(root_dir: str, recursive: bool = True, filter: str = ""): """Return (labels, paths) sorted by mtime desc.""" root = Path(root_dir) if not root.exists(): return [], [] files = sorted( (root.rglob("*.ckpt") if recursive else root.glob("*.ckpt")), key=lambda p: p.stat().st_mtime, reverse=True, ) files = [p for p in files if filter in str(p)] labels = [] for p in files: rel = p.relative_to(root) mtime = dt.datetime.fromtimestamp(p.stat().st_mtime).strftime("%Y-%m-%d %H:%M") labels.append(f"{rel} β€’ {mtime}") return labels, [str(p) for p in files] # ---------- Your SmallCNN (for FMNIST) ---------- class SmallCNN(nn.Module): def __init__(self, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, padding=1) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.pool2 = nn.MaxPool2d(2, 2) self.fc = nn.Linear(64 * 7 * 7, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = torch.flatten(x, 1) return self.fc(x) # ---------- Load model + meta from checkpoint ---------- def load_model_from_ckpt(ckpt_path: Path, device: str): ckpt = torch.load(str(ckpt_path), map_location=device) classes = ckpt.get("classes", None) meta = ckpt.get("meta", {}) num_classes = len(classes) if classes else 10 model_name = meta.get("model_name", "smallcnn") if model_name == "smallcnn": model = SmallCNN(num_classes=num_classes).to(device) default_target_layer = "conv2" elif model_name == "resnet18_cifar": m = tvm.resnet18(weights=None) m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) m.maxpool = nn.Identity() m.fc = nn.Linear(m.fc.in_features, num_classes) model = m.to(device) default_target_layer = "layer4" elif model_name == "resnet18_imagenet": try: w = tvm.ResNet18_Weights.IMAGENET1K_V1 except Exception: w = None m = tvm.resnet18(weights=w) m.fc = nn.Linear(m.fc.in_features, num_classes) model = m.to(device) default_target_layer = "layer4" else: raise ValueError(f"Unknown model_name in ckpt: {model_name}") model.load_state_dict(ckpt["model_state"]) model.eval() # ensure meta has defaults meta.setdefault("default_target_layer", default_target_layer) return model, classes, meta def build_transform_from_meta(meta): img_size = int(meta.get("img_size", 28)) mean = meta.get("mean", [0.2860]) # FMNIST fallback std = meta.get("std", [0.3530]) if len(mean) == 1: return T.Compose( [ T.Grayscale(num_output_channels=1), T.Resize((img_size, img_size)), T.ToTensor(), T.Normalize(mean, std), ] ) else: return T.Compose( [ T.Resize((img_size, img_size)), T.ToTensor(), T.Normalize(mean, std), ] ) def predict_and_cam(model, x, device, target_layer, topk=3, method="Grad-CAM"): """ x: Tensor [1,C,H,W] normalized returns: list of dicts: {rank, class_index, prob, cam_tensor(H,W)} """ cam_cls = GradCAM if method == "Grad-CAM" else GradCAMpp cam_extractor = cam_cls(model, target_layer=target_layer) logits = model(x.to(device)) probs = torch.softmax(logits, dim=1)[0].detach().cpu() top_vals, top_idxs = probs.topk(topk) results = [] for rank, (p, idx) in enumerate(zip(top_vals.tolist(), top_idxs.tolist())): retain = rank < topk - 1 cams = cam_extractor(idx, logits, retain_graph=retain) # list cam = cams[0].detach().cpu() # [H,W] at feature-map resolution results.append( {"rank": rank + 1, "class_index": int(idx), "prob": float(p), "cam": cam} ) return results, probs def overlay_pil(base_pil_rgb: Image.Image, cam_tensor, alpha=0.5): # cam_tensor: torch.Tensor HxW in [0,1] (we'll min-max it) cam = cam_tensor.clone() cam -= cam.min() cam = cam / (cam.max() + 1e-8) heat = T.ToPILImage()(cam) # single-channel PIL return overlay_mask(base_pil_rgb, heat, alpha=alpha) # ---------- UI ---------- st.set_page_config(page_title="Grad-CAM Demo", page_icon="πŸ”", layout="wide") st.title("πŸ” Grad-CAM Demo β€” upload an image, get top-k + heatmaps") # Sidebar: checkpoint + options with st.sidebar: st.header("Settings") ckpt_path = st.session_state.get("ckpt_path") st.subheader("Checkpoints") # Remote download (presets or URL), saved automatically to saved_checkpoints/ presets = load_release_presets() preset_names = list(presets.keys()) preset_sel = st.selectbox("Preset (GitHub Releases)", options=["(none)"] + preset_names, index=0) if preset_names else "(none)" url_input = st.text_input("Or paste asset URL", value="") if st.button("Download checkpoint", use_container_width=True): url = presets.get(preset_sel, "") if preset_sel != "(none)" else url_input.strip() if not url: st.warning("Provide a preset or paste a URL") else: try: path_dl = download_release_asset(url, dest_dir="saved_checkpoints") st.success(f"Downloaded to: {path_dl}") ckpt_path = path_dl st.session_state["ckpt_path"] = ckpt_path st.cache_data.clear() except Exception as e: st.error(f"Download failed: {e}") # Upload a user-provided .ckpt directly in the online app uploaded_ckpt = st.file_uploader("Upload checkpoint (.ckpt)", type=["ckpt"], accept_multiple_files=False) if uploaded_ckpt is not None and st.button("Use uploaded checkpoint", use_container_width=True): try: Path("saved_checkpoints").mkdir(parents=True, exist_ok=True) raw = uploaded_ckpt.read() content_hash = hashlib.sha256(raw).hexdigest()[:16] base_name = Path(uploaded_ckpt.name).name if not base_name.endswith(".ckpt"): base_name = f"{base_name}.ckpt" local_path = Path("saved_checkpoints") / f"{content_hash}_{base_name}" with open(local_path, "wb") as f: f.write(raw) ckpt_path = str(local_path) st.session_state["ckpt_path"] = ckpt_path st.success(f"Uploaded to: {ckpt_path}") st.cache_data.clear() except Exception as e: st.error(f"Upload failed: {e}") st.caption(f"Selected: {ckpt_path}") with st.expander("Checkpoint meta preview", expanded=False): try: if ckpt_path: m, c, meta_preview = load_model_from_ckpt(Path(ckpt_path), device="cpu") st.json( { "dataset": meta_preview.get("dataset"), "model_name": meta_preview.get("model_name"), "img_size": meta_preview.get("img_size"), "target_layer": meta_preview.get("default_target_layer"), } ) else: st.info("No checkpoint selected yet.") except Exception as e: st.info(f"Could not read meta: {e}") method = st.selectbox("CAM method", ["Grad-CAM", "Grad-CAM++"], index=0) topk = st.slider("Top-k classes", min_value=1, max_value=10, value=3, step=1) alpha = st.slider( "Overlay alpha", min_value=0.1, max_value=0.9, value=0.5, step=0.05 ) # Load model/meta if not ckpt_path or not Path(ckpt_path).exists(): st.info( "First choose a checkpoint:\n" "- Preset: pick from the list and click 'Download checkpoint'\n" "- URL: paste a direct .ckpt URL and click 'Download checkpoint'\n" "- Upload: select a .ckpt and click 'Use uploaded checkpoint'\n\n" "After a checkpoint is selected, upload an image or use the sample picker to see predictions and Grad-CAM overlays." ) st.stop() device = "cpu" model, classes, meta = load_model_from_ckpt(Path(ckpt_path), device) tf = build_transform_from_meta(meta) target_layer = meta.get("default_target_layer", "conv2") # Main: uploader # Main: uploader OR dataset sample st.subheader("1) Provide an image") uploaded = st.file_uploader( "Upload PNG/JPG (or pick a sample below)", type=["png", "jpg", "jpeg"] ) with st.expander("…or pick a sample from this model's dataset", expanded=False): ds_default = meta.get("dataset", "fashion-mnist") ds, ds_classes = load_raw_dataset(ds_default, root="data") targets = np.array(getattr(ds, "targets", [ds[i][1] for i in range(len(ds))])) # --- class filter (persisted) --- class_opts = ["(any)"] + list(ds_classes) class_sel = st.selectbox("Class filter", options=class_opts, index=0, key="class_sel") if class_sel == "(any)": filtered_idx = np.arange(len(ds)) else: class_id = ds_classes.index(class_sel) filtered_idx = np.nonzero(targets == class_id)[0] # --- ensure we have a session index and keep it valid --- if "sample_idx" not in st.session_state: st.session_state["sample_idx"] = 0 # clamp when filter changes or dataset length is small if len(filtered_idx) > 0: st.session_state["sample_idx"] = int( np.clip(st.session_state["sample_idx"], 0, len(filtered_idx) - 1) ) if len(filtered_idx) == 0: st.info("No samples found for this class.") sample_img = None else: col_l, col_r = st.columns([2, 1]) with col_r: picked = st.button("Pick random", use_container_width=True, key="btn_pick_random") if picked: # IMPORTANT: update session_state BEFORE creating the slider cur = st.session_state["sample_idx"] if len(filtered_idx) > 1: new_idx = random.randrange(len(filtered_idx) - 1) if new_idx >= cur: new_idx += 1 else: new_idx = 0 st.session_state["sample_idx"] = new_idx # no st.rerun() needed; the app will rerun after the button with col_l: # Now instantiate the slider (AFTER any state changes above) st.slider( "Pick index (within filtered samples)", 0, max(0, len(filtered_idx) - 1), key="sample_idx", # same key as the state we set above ) raw_idx = int(filtered_idx[st.session_state["sample_idx"]]) img_tensor, label = ds[raw_idx] sample_img = pil_from_tensor(img_tensor, grayscale_to_rgb=True) st.image( sample_img, caption=f"Sample β€’ {ds_default} β€’ class={ds_classes[label]} β€’ idx={raw_idx}", width=160, use_container_width=False, ) # Decide the input image used downstream if uploaded is not None: pil = Image.open(uploaded).convert("RGB") elif "sample_img" in locals() and sample_img is not None: pil = sample_img else: st.info("Upload an image or open the sample picker above.") st.stop() col_in, col_cfg = st.columns([2, 1]) with col_in: if uploaded: pil = Image.open(uploaded).convert("RGB") elif sample_img is not None: pil = sample_img else: st.info("Upload an image or check 'Use a sample image'.") st.stop() st.image(pil, caption="Input", use_container_width=True) with col_cfg: st.markdown("**Model meta**") st.json( { "dataset": meta.get("dataset"), "model_name": meta.get("model_name"), "img_size": meta.get("img_size"), "target_layer": target_layer, "mean": meta.get("mean"), "std": meta.get("std"), "classes": ( classes if classes and len(classes) <= 10 else f"{len(classes) if classes else 'N/A'} classes" ), } ) # Prepare tensor + denormalized PIL base for overlay x = tf(pil) # CxHxW normalized x_batched = x.unsqueeze(0) # 1xCxHxW base_pil = denorm_to_pil(x, meta.get("mean", [0.2860]), meta.get("std", [0.3530])) # Predict + CAM with st.spinner("Running inference + Grad-CAM..."): try: cam_results, probs = predict_and_cam( model, x_batched, device, target_layer, topk=topk, method=method ) except Exception as e: st.error( f"Grad-CAM failed. Target layer likely incorrect." f"\nLayer: {target_layer}\nError: {e}" ) st.stop() # Top-k table st.subheader("2) Top-k predictions") rows = [] for r in cam_results: name = classes[r["class_index"]] if classes else str(r["class_index"]) rows.append( { "rank": r["rank"], "class": name, "index": r["class_index"], "prob": round(r["prob"], 4), } ) st.dataframe(rows, use_container_width=True) # Overlays st.subheader("3) Grad-CAM overlays") cols = st.columns(len(cam_results)) for c, r in zip(cols, cam_results): name = classes[r["class_index"]] if classes else str(r["class_index"]) ov = overlay_pil(base_pil, r["cam"], alpha=alpha) with c: st.image( ov, caption=f"Top{r['rank']}: {name} ({r['prob']:.3f})", use_container_width=True, )