Spaces:
Running
Running
File size: 17,537 Bytes
1dedb52 ab82350 127cc6f 27638f8 1dedb52 ffca6e7 10d59b8 c297628 127cc6f ffca6e7 10d59b8 c297628 1dedb52 127cc6f 1dedb52 27638f8 28bec71 ffca6e7 1dedb52 28bec71 1dedb52 28bec71 0e48ab9 28bec71 ab82350 28bec71 10d59b8 28bec71 16d8300 28bec71 16d8300 28bec71 127cc6f 28bec71 127cc6f 28bec71 127cc6f 28bec71 ab82350 28bec71 ab82350 127cc6f 28bec71 127cc6f 1501da9 127cc6f a86996f 127cc6f 1501da9 127cc6f ac0e33a 127cc6f 28bec71 127cc6f 1dedb52 3a4d296 ffca6e7 127cc6f ffca6e7 127cc6f e3793a3 ffca6e7 127cc6f ffca6e7 127cc6f 28bec71 127cc6f e6fcd81 98371a5 27638f8 3a4d296 d0317c5 27638f8 7d08e8b 1dedb52 ffca6e7 e3793a3 1dedb52 127cc6f e3793a3 127cc6f 28bec71 127cc6f 28bec71 ffca6e7 e6fcd81 ffca6e7 28bec71 e6fcd81 28bec71 ffca6e7 28bec71 e6fcd81 28bec71 27638f8 10d59b8 0e48ab9 3a4d296 0e48ab9 10d59b8 49c7961 c297628 10d59b8 49c7961 27638f8 127cc6f 8c46e7b 127cc6f a86996f c435fcc 27638f8 127cc6f e6fcd81 127cc6f ffca6e7 127cc6f e6fcd81 127cc6f 1dedb52 95d1cf3 1dedb52 27638f8 cb35049 e6fcd81 28bec71 b7b8a3b c297628 49c7961 eae3909 c297628 49c7961 eae3909 b7b8a3b 49c7961 3a4d296 49c7961 3a4d296 49c7961 127cc6f c435fcc 27638f8 10d59b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
from __future__ import annotations
import zipfile
from dataclasses import dataclass
from pathlib import Path
import gradio as gr
import pandas as pd
import numpy as np
from functools import partial
from copy import deepcopy
import website_texts
import os
import re
from constants import model_type_emoji
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from website_texts import (
ABOUT_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
TITLE,
VERSION_HISTORY_BUTTON_TEXT,
)
@dataclass
class LBContainer:
name: str
base_path_to_results: str
blurb: str | None = None
n_datasets: int | None = None
def __post_init__(self):
for fname in os.listdir(self._base_path):
match = re.match(r"n_datasets_(.+)", fname)
if match:
self.n_datasets = match.group(1)
break
@property
def _base_path(self):
return Path(__file__).parent / "data" / self.base_path_to_results
def load_df_leaderboard(self) -> pd.DataFrame:
df = pd.read_csv(self._base_path.resolve() / "website_leaderboard.csv")
df = df.rename(columns={"1#": "#"})
return df
def _handle_img_zip(self, img_name: str) -> str:
_base_path = self._base_path / img_name
zip_path = _base_path.with_suffix(".png.zip")
img_path = _base_path.with_suffix(".png")
if img_path.exists():
return str(img_path)
with zipfile.ZipFile(zip_path, "r") as zipf:
zipf.extractall(img_path.parent)
return str(img_path)
def get_path_to_tuning_impact_elo(self) -> str:
return self._handle_img_zip("tuning-impact-elo")
def get_path_to_pareto_front_improvability_vs_time_infer(self) -> str:
return self._handle_img_zip("pareto_front_improvability_vs_time_infer")
def get_path_to_pareto_n_configs_imp(self) -> str:
return self._handle_img_zip("pareto_n_configs_imp")
def get_path_to_winrate_matrix(self) -> str:
return self._handle_img_zip("winrate_matrix")
def make_overview_images(lb: LBContainer, subset_name):
# Main Figure
gr.Image(
lb.get_path_to_tuning_impact_elo(),
label=f"Leaderboard Overview [{subset_name}]",
show_label=True,
height=500,
show_share_button=True,
)
with gr.Row():
with gr.Column(scale=1):
gr.Image(
value=lb.get_path_to_pareto_front_improvability_vs_time_infer(),
label=f"Inference Time Pareto Front [{subset_name}]",
height=400,
show_label=True,
show_share_button=True,
)
with gr.Column(scale=1):
gr.Image(
value=lb.get_path_to_pareto_n_configs_imp(),
label=f"Tuning Trajectories [{subset_name}]",
height=400,
show_label=True,
show_share_button=True,
)
def make_overview_leaderboard(lbs: [LBContainer]):
# Create column per LB
all_models = {
m.split("[")[0].strip()
for lb in lbs
for m in lb.df_leaderboard[
~lb.df_leaderboard["TypeName"].isin(["Reference Pipeline"])
]["Model"]
.unique()
.tolist()
}
full_df = None
for lb in lbs:
df = lb.df_leaderboard.copy()
df = df[~df["TypeName"].isin(["Reference Pipeline"])]
df[lb.name] = df["Elo [β¬οΈ]"].rank(ascending=False, method="first").astype(int)
df = df.sort_values(by=lb.name, ascending=True)
df = df[["Type", "Model", lb.name]]
# Remove imputed message.
df["Model"] = (
df["Model"].apply(lambda x: x.split("[")[0].strip()).astype("string")
)
if full_df is None:
# TODO: add support in case a model did not run on the full LB.
assert all_models.difference(set(df["Model"].unique())) == set()
full_df = df
else:
df = df[["Model", lb.name]]
df_models = set(df["Model"].unique())
missing_models = all_models.difference(df_models)
if missing_models:
missing_models_df = pd.DataFrame(
[[mm, "--"] for mm in missing_models],
columns=["Model", lb.name],
)
df = pd.concat([df, missing_models_df], ignore_index=True)
df["Model"] = df["Model"].astype("string")
# Merge
full_df = full_df.merge(df, how="left", on="Model", validate="1:1")
medal_colors = ["#998A00", "#808080", "#8C5520"]
# Highlight function
def highlight_top3(col):
styles = [""] * len(col)
for index_i in range(len(col)):
if (not isinstance(col.iloc[index_i], str)) and col.iloc[index_i] <= 3:
styles[index_i] = (
f"background-color: {medal_colors[col.iloc[index_i] - 1]};"
)
return styles
styler = full_df.style.apply(highlight_top3, axis=0, subset=[lb.name for lb in lbs])
return gr.DataFrame(
styler,
pinned_columns=2,
interactive=False,
show_search="search",
label="The ranking of all models (with imputation) across various leaderboards.",
)
def make_leaderboard(lb: LBContainer) -> Leaderboard:
df_leaderboard = lb.load_df_leaderboard()
# -- Add filters
df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
lambda m: f"{m} {model_type_emoji[m]}"
)
df_leaderboard["Only Default"] = df_leaderboard["Model"].str.contains(
"(default)", regex=False
)
df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.contains(
"(tuned)", regex=False
)
df_leaderboard["Only Tuned + Ensembled"] = df_leaderboard["Model"].str.contains(
r"(tuned + ensembled)", regex=False
) | df_leaderboard["Model"].str.contains(r"AutoGluon", regex=False)
filter_columns = [
ColumnFilter("TypeFiler", type="checkboxgroup", label="π€ Model Types"),
ColumnFilter("Only Default", type="boolean", default=False),
ColumnFilter("Only Tuned", type="boolean", default=False),
ColumnFilter("Only Tuned + Ensembled", type="boolean", default=False),
]
datatypes = []
for s in df_leaderboard.T.values:
dt = s.dtype
if dt == bool:
datatypes.append("bool")
elif np.issubdtype(dt, np.number):
datatypes.append("number")
else:
datatypes.append("markdown")
# Add Imputed count postfix
if any(df_leaderboard["Imputed"]):
df_leaderboard["Imputed"] = df_leaderboard["Imputed"].replace(
{
True: "Imputed",
False: "Not Imputed",
}
)
datatypes.append("bool")
filter_columns.append(
ColumnFilter(
"Imputed",
type="checkboxgroup",
label="(Not) Imputed Models",
info="We impute the performance for models that cannot run on all"
" datasets due to task or dataset size constraints. We impute with"
" the performance of a default RandomForest."
" We add a postfix [X% IMPUTED] to the model if any results were"
" imputed. The X% shows the percentage of"
" datasets that were imputed. In general, imputation negatively"
" represents the model performance, punishing the model for not"
" being able to run on all datasets.",
)
)
else:
df_leaderboard = df_leaderboard.drop(columns=["Imputed (%) [β¬οΈ]"])
return Leaderboard(
# label=f"Full Leaderboard [{lb.name}]",
elem_id=f"lb_for_{lb.name}",
value=df_leaderboard,
datatype=datatypes,
select_columns=SelectColumns(
default_selection=list(df_leaderboard.columns),
cant_deselect=["Type", "Model"],
label="Select Columns to Display:",
),
hide_columns=[
"TypeName",
"TypeFiler",
"RefModel",
"Only Default",
"Only Tuned",
"Only Tuned + Ensembled",
"Imputed",
],
search_columns=["Model", "TypeName"],
filter_columns=filter_columns,
bool_checkboxgroup_label="Custom Views (exclusive, only toggle one at a time):",
height=800,
)
@dataclass
class LBMatrixElement:
imputation: str
splits: str
tasks: str
datasets: str
def get_path_to_results(self) -> str:
return (
f"imputation_{self.imputation}/"
f"splits_{self.splits}/"
f"tasks_{self.tasks}/"
f"datasets_{self.datasets}/"
)
@dataclass
class LBMatrix:
imputation = ["no", "yes"]
splits = ["all", "lite"]
tasks = ["all", "classification", "regression"]
datasets = ["all", "small", "medium", "tabpfn"]
@staticmethod
def get_name_for_lb(lb_key, lb_value):
if lb_key == "imputation":
return (
"Models (w/o imputation)"
if lb_value == "no"
else "πΉ Models (with imputation)"
)
if lb_key == "splits":
return "All Repeats" if lb_value == "all" else "Lite"
if lb_key == "tasks":
match lb_value:
case "all":
return "All Tasks"
case "classification":
return "Classification"
case "regression":
return "Regression"
case _:
raise ValueError()
if lb_key == "datasets":
match lb_value:
case "all":
return "All Datasets"
case "small":
return "Small"
case "medium":
return "Medium"
case "tabpfn":
return "πΈ TabPFNv2-data"
case _:
raise ValueError()
raise ValueError()
def element_to_blurb(self, element: LBMatrixElement, n_datasets: int) -> str:
datasets_name = (
element.datasets if element.datasets != "tabpfn" else "TabPFNv2-compatible"
)
blurb = f"Leaderboard for {n_datasets} datasets ({datasets_name} datasets, {element.tasks} tasks) "
if element.splits == "lite":
blurb += "for one split (1st fold, 1st repeat) "
blurb += "including all "
if element.imputation == "yes":
blurb += "(imputed) "
blurb += f"models."
if datasets_name == "small":
blurb += "<br>Small datasets contain between 500 and 10,000 samples."
elif datasets_name == "medium":
blurb += "<br>Medium datasets contain between 10,000 and 250,000 samples."
elif datasets_name == "TabPFNv2-compatible":
blurb += "<br>TabPFNv2-compatible datasets contain at most 10,000 samples, 500 features, and 10 classes."
return blurb
def render_details(imputation, splits, tasks, datasets, lb_matrix):
"""
Renders the heavy content (images, dataframes).
"""
impute_t_name = lb_matrix.get_name_for_lb("imputation", imputation)
splits_t = lb_matrix.get_name_for_lb("splits", splits)
tasks_t_name = lb_matrix.get_name_for_lb("tasks", tasks)
datasets_t_name = lb_matrix.get_name_for_lb("datasets", datasets)
lb_element = LBMatrixElement(
imputation=imputation,
splits=splits,
tasks=tasks,
datasets=datasets,
)
lb = LBContainer(
name=f"{impute_t_name} | {splits_t} | {tasks_t_name} | {datasets_t_name}",
base_path_to_results=lb_element.get_path_to_results(),
)
lb.blurb = lb_matrix.element_to_blurb(
lb_element,
n_datasets=lb.n_datasets,
)
gr.Markdown(
lb.blurb,
elem_classes="markdown-text",
)
make_overview_images(lb, subset_name=lb.name)
# Render Leaderboard safely
with gr.Group():
gr.Markdown(
"## β Full Leaderboard Table",
elem_classes="markdown-text",
)
make_leaderboard(lb)
gr.Image(
lb.get_path_to_winrate_matrix(),
label=f"Winmatrix Overview [{lb.name}]",
show_label=True,
height=800,
show_share_button=True,
)
def render_func(evt: gr.SelectData):
print(f"Tab Selected: {evt.value} (Type: {evt.index})")
def main():
css = """
.markdown-text-box {
padding: 4px;
border-radius: 2px;
}
.tab-buttons {
margin-top: -14px !important;
margin-bottom: -14px !important;
}
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(css=css, js=js_func, title="TabArena") as website:
gr.HTML(TITLE)
# -- Introduction
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column(), gr.Accordion("π Datasets", open=False):
gr.Markdown(
website_texts.OVERVIEW_DATASETS, elem_classes="markdown-text-box"
)
with gr.Column(), gr.Accordion("π€ Models", open=False):
gr.Markdown(
website_texts.OVERVIEW_MODELS, elem_classes="markdown-text-box"
)
with gr.Row():
with gr.Column(), gr.Accordion("π Metrics, Imputation, Repeats", open=False):
gr.Markdown(
website_texts.OVERVIEW_METRICS, elem_classes="markdown-text-box"
)
with gr.Column(), gr.Accordion("π Reference Pipelines", open=False):
gr.Markdown(
website_texts.OVERVIEW_REF_PIPE, elem_classes="markdown-text-box"
)
with gr.Row(), gr.Accordion("π About", open=False):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text-box")
with gr.Row(), gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=7,
elem_id="citation-button",
show_copy_button=True,
)
gr.Markdown("## π TabArena Leaderboards")
gr.Markdown("Change the filters below to compare models with our without imputation across repeats, tasks, and dataset subsets.")
gr.Markdown("")
lb_matrix = LBMatrix()
impute_state = gr.State(lb_matrix.imputation[0])
splits_state = gr.State(lb_matrix.splits[0])
tasks_state = gr.State(lb_matrix.tasks[0])
datasets_state = gr.State(lb_matrix.datasets[0])
# Impute
with gr.Tabs(elem_classes="tab-buttons") as impute_tabs:
for impute_t in lb_matrix.imputation:
with gr.TabItem(
lb_matrix.get_name_for_lb("imputation", impute_t),
id=impute_t,
) as t_impute:
t_impute.select(lambda x=impute_t: x, outputs=impute_state)
# Splits
with gr.Tabs(elem_classes="tab-buttons") as split_tabs:
for splits_t in lb_matrix.splits:
with gr.TabItem(
lb_matrix.get_name_for_lb("splits", splits_t),
id=f"{impute_t}_{splits_t}",
) as t_splits:
t_splits.select(lambda x=splits_t: x, outputs=splits_state)
# Tasks
with gr.Tabs(elem_classes="tab-buttons") as task_tabs:
for tasks_t in lb_matrix.tasks:
with gr.TabItem(
lb_matrix.get_name_for_lb("tasks", tasks_t),
id=f"{impute_t}_{splits_t}_{tasks_t}",
) as t_tasks:
t_tasks.select(lambda x=tasks_t: x, outputs=tasks_state)
# Datasets
with gr.Tabs(elem_classes="tab-buttons") as dataset_tabs:
for datasets_t in lb_matrix.datasets:
with gr.TabItem(
lb_matrix.get_name_for_lb("datasets", datasets_t),
id=f"{impute_t}_{splits_t}_{tasks_t}_{datasets_t}",
) as t_dataset:
t_dataset.select(
lambda x=datasets_t: x,
outputs=datasets_state,
)
with gr.Column():
@gr.render(inputs=[impute_state, splits_state, tasks_state, datasets_state])
def reactive_render(sel_i, sel_s, sel_t, sel_d):
render_details(
imputation=sel_i,
splits=sel_s,
tasks=sel_t,
datasets=sel_d,
lb_matrix=lb_matrix,
)
with gr.Row(), gr.Accordion("π Version History", open=False):
gr.Markdown(VERSION_HISTORY_BUTTON_TEXT, elem_classes="markdown-text")
website.launch(show_error=True, ssr_mode=False, debug=True)
if __name__ == "__main__":
main() |