Spaces:
Running
Running
Commit
·
3a4d296
1
Parent(s):
c435fcc
fix filters
Browse files
main.py
CHANGED
|
@@ -173,11 +173,15 @@ def make_leaderboard(lb: LBContainer) -> Leaderboard:
|
|
| 173 |
df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
|
| 174 |
lambda m: f"{m} {model_type_emoji[m]}"
|
| 175 |
)
|
| 176 |
-
df_leaderboard["Only Default"] = df_leaderboard["Model"].str.
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
filter_columns = [
|
| 183 |
ColumnFilter("TypeFiler", type="checkboxgroup", label="🤖 Model Types"),
|
|
@@ -222,6 +226,7 @@ def make_leaderboard(lb: LBContainer) -> Leaderboard:
|
|
| 222 |
)
|
| 223 |
|
| 224 |
return Leaderboard(
|
|
|
|
| 225 |
elem_id=f"lb_for_{lb.name}",
|
| 226 |
value=df_leaderboard,
|
| 227 |
datatype=datatypes,
|
|
@@ -351,7 +356,12 @@ def render_details(imputation, splits, tasks, datasets, lb_matrix):
|
|
| 351 |
make_overview_images(lb, subset_name=lb.name)
|
| 352 |
|
| 353 |
# Render Leaderboard safely
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
gr.Image(
|
| 357 |
lb.get_path_to_winrate_matrix(),
|
|
@@ -467,13 +477,10 @@ def main():
|
|
| 467 |
outputs=datasets_state,
|
| 468 |
)
|
| 469 |
|
| 470 |
-
|
| 471 |
-
def reactive_render(sel_i, sel_s, sel_t, sel_d):
|
| 472 |
-
# Since we are outside the loop, we don't need to check contexts.
|
| 473 |
-
# We simply render whatever the current state dictates.
|
| 474 |
-
print(f"Rendering: {sel_i}, {sel_s}, {sel_t}, {sel_d}")
|
| 475 |
|
| 476 |
-
|
|
|
|
| 477 |
render_details(
|
| 478 |
imputation=sel_i,
|
| 479 |
splits=sel_s,
|
|
|
|
| 173 |
df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
|
| 174 |
lambda m: f"{m} {model_type_emoji[m]}"
|
| 175 |
)
|
| 176 |
+
df_leaderboard["Only Default"] = df_leaderboard["Model"].str.contains(
|
| 177 |
+
"(default)", regex=False
|
| 178 |
+
)
|
| 179 |
+
df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.contains(
|
| 180 |
+
"(tuned)", regex=False
|
| 181 |
+
)
|
| 182 |
+
df_leaderboard["Only Tuned + Ensembled"] = df_leaderboard["Model"].str.contains(
|
| 183 |
+
r"(tuned + ensembled)", regex=False
|
| 184 |
+
) | df_leaderboard["Model"].str.contains(r"AutoGluon", regex=False)
|
| 185 |
|
| 186 |
filter_columns = [
|
| 187 |
ColumnFilter("TypeFiler", type="checkboxgroup", label="🤖 Model Types"),
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
return Leaderboard(
|
| 229 |
+
# label=f"Full Leaderboard [{lb.name}]",
|
| 230 |
elem_id=f"lb_for_{lb.name}",
|
| 231 |
value=df_leaderboard,
|
| 232 |
datatype=datatypes,
|
|
|
|
| 356 |
make_overview_images(lb, subset_name=lb.name)
|
| 357 |
|
| 358 |
# Render Leaderboard safely
|
| 359 |
+
with gr.Group():
|
| 360 |
+
gr.Markdown(
|
| 361 |
+
"## ⭐ Full Leaderboard Table",
|
| 362 |
+
elem_classes="markdown-text",
|
| 363 |
+
)
|
| 364 |
+
make_leaderboard(lb)
|
| 365 |
|
| 366 |
gr.Image(
|
| 367 |
lb.get_path_to_winrate_matrix(),
|
|
|
|
| 477 |
outputs=datasets_state,
|
| 478 |
)
|
| 479 |
|
| 480 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
+
@gr.render(inputs=[impute_state, splits_state, tasks_state, datasets_state])
|
| 483 |
+
def reactive_render(sel_i, sel_s, sel_t, sel_d):
|
| 484 |
render_details(
|
| 485 |
imputation=sel_i,
|
| 486 |
splits=sel_s,
|