LennartPurucker commited on
Commit
3a4d296
·
1 Parent(s): c435fcc

fix filters

Browse files
Files changed (1) hide show
  1. main.py +19 -12
main.py CHANGED
@@ -173,11 +173,15 @@ def make_leaderboard(lb: LBContainer) -> Leaderboard:
173
  df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
174
  lambda m: f"{m} {model_type_emoji[m]}"
175
  )
176
- df_leaderboard["Only Default"] = df_leaderboard["Model"].str.endswith("(default)")
177
- df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.endswith("(tuned)")
178
- df_leaderboard["Only Tuned + Ensembled"] = df_leaderboard["Model"].str.endswith(
179
- "(tuned + ensembled)"
180
- ) | df_leaderboard["Model"].str.endswith(", 4h)")
 
 
 
 
181
 
182
  filter_columns = [
183
  ColumnFilter("TypeFiler", type="checkboxgroup", label="🤖 Model Types"),
@@ -222,6 +226,7 @@ def make_leaderboard(lb: LBContainer) -> Leaderboard:
222
  )
223
 
224
  return Leaderboard(
 
225
  elem_id=f"lb_for_{lb.name}",
226
  value=df_leaderboard,
227
  datatype=datatypes,
@@ -351,7 +356,12 @@ def render_details(imputation, splits, tasks, datasets, lb_matrix):
351
  make_overview_images(lb, subset_name=lb.name)
352
 
353
  # Render Leaderboard safely
354
- make_leaderboard(lb)
 
 
 
 
 
355
 
356
  gr.Image(
357
  lb.get_path_to_winrate_matrix(),
@@ -467,13 +477,10 @@ def main():
467
  outputs=datasets_state,
468
  )
469
 
470
- @gr.render(inputs=[impute_state, splits_state, tasks_state, datasets_state])
471
- def reactive_render(sel_i, sel_s, sel_t, sel_d):
472
- # Since we are outside the loop, we don't need to check contexts.
473
- # We simply render whatever the current state dictates.
474
- print(f"Rendering: {sel_i}, {sel_s}, {sel_t}, {sel_d}")
475
 
476
- with gr.Group():
 
477
  render_details(
478
  imputation=sel_i,
479
  splits=sel_s,
 
173
  df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
174
  lambda m: f"{m} {model_type_emoji[m]}"
175
  )
176
+ df_leaderboard["Only Default"] = df_leaderboard["Model"].str.contains(
177
+ "(default)", regex=False
178
+ )
179
+ df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.contains(
180
+ "(tuned)", regex=False
181
+ )
182
+ df_leaderboard["Only Tuned + Ensembled"] = df_leaderboard["Model"].str.contains(
183
+ r"(tuned + ensembled)", regex=False
184
+ ) | df_leaderboard["Model"].str.contains(r"AutoGluon", regex=False)
185
 
186
  filter_columns = [
187
  ColumnFilter("TypeFiler", type="checkboxgroup", label="🤖 Model Types"),
 
226
  )
227
 
228
  return Leaderboard(
229
+ # label=f"Full Leaderboard [{lb.name}]",
230
  elem_id=f"lb_for_{lb.name}",
231
  value=df_leaderboard,
232
  datatype=datatypes,
 
356
  make_overview_images(lb, subset_name=lb.name)
357
 
358
  # Render Leaderboard safely
359
+ with gr.Group():
360
+ gr.Markdown(
361
+ "## ⭐ Full Leaderboard Table",
362
+ elem_classes="markdown-text",
363
+ )
364
+ make_leaderboard(lb)
365
 
366
  gr.Image(
367
  lb.get_path_to_winrate_matrix(),
 
477
  outputs=datasets_state,
478
  )
479
 
480
+ with gr.Column():
 
 
 
 
481
 
482
+ @gr.render(inputs=[impute_state, splits_state, tasks_state, datasets_state])
483
+ def reactive_render(sel_i, sel_s, sel_t, sel_d):
484
  render_details(
485
  imputation=sel_i,
486
  splits=sel_s,