Spaces:
Runtime error
Runtime error
File size: 2,248 Bytes
92d1986 f81630c d8f89be f81630c e8b8c7d d8f89be e8b8c7d f81630c e8b8c7d f81630c 7843274 f81630c e8b8c7d f81630c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from gradio_client import Client
title = """# 🙋🏻♂️Welcome to tonic's openai⚒️connector for 🐣e5-mistral🛌🏻
this⚒️connector looks like openai embeddings but uses 🐣e5-mistral🛌🏻 - so you can use it as a drop in replacement for the open ai api. Both the inputs and outputs exactly match what is⚒️expected from openai's api so anything already⚒️compatible with that api is now compative with 🐣e5-mistral🛌🏻
"""
client = Client("https://tonic-e5.hf.space/--replicas/w3v1e/")
def get_embeddings(task, input_text):
try:
result = client.predict(
task,
input_text,
api_name="/compute_embeddings"
)
return result
except Exception as e:
return str(e)
def format_response(embeddings, model):
return {
"data": [
{
"embedding": embeddings,
"index": 0,
"object": "embedding"
}
],
"model": model,
"object": "list",
"usage": {
"prompt_tokens": 17,
"total_tokens": 17
}
}
def generate_embeddings(input_text, model, encoding_format, user):
embeddings = get_embeddings(model, input_text)
formatted_response = format_response(embeddings, model)
return formatted_response
with gr.Blocks() as app:
gr.Markdown(title)
with gr.Row():
input_text = gr.Textbox(label="Input Text", placeholder="Enter text or array of texts")
model = gr.Dropdown(label="Model", choices=["ArguAna", "ClimateFEVER", "DBPedia", "FEVER", "FiQA2018", "HotpotQA", "MSMARCO", "NFCorpus", "NQ", "QuoraRetrieval", "SCIDOCS", "SciFact", "Touche2020", "TRECCOVID"], value="text-embedding-ada-002")
encoding_format = gr.Radio(label="Encoding Format", choices=["float", "base64"], value="float")
user = gr.Textbox(label="User", placeholder="Enter user identifier (optional)")
submit_button = gr.Button("Generate Embeddings")
output = gr.JSON(label="Embeddings Output")
submit_button.click(
fn=generate_embeddings,
inputs=[input_text, model, encoding_format, user],
outputs=output
)
app.launch() |