Spaces:
Paused
Paused
| import gradio as gr | |
| from transformers import pipeline | |
| raven_pipeline = pipeline( | |
| "text-generation", | |
| model="Nexusflow/NexusRaven-V2-13B", | |
| torch_dtype="auto", | |
| device_map="auto", | |
| ) | |
| class DialogueToSpeechConverter: | |
| def __init__(self): | |
| self.raven_pipeline = raven_pipeline | |
| def process_text(self, input_text: str) -> str: | |
| prompt = f"User Query: {input_text}<human_end>" | |
| result = self.raven_pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"] | |
| return result | |
| # Gradio interface | |
| def create_interface(): | |
| converter = DialogueToSpeechConverter() | |
| with gr.Blocks() as app: | |
| gr.Markdown("""# 🙋🏻♂️Welcome to🌟Tonic's Nexus🐦⬛Raven""") | |
| gr.Markdown("""You can build with this endpoint using Nexus Raven. The demo is still a work in progress but we hope to add some endpoints for commonly used functions such as intention mappers and audiobook processing.""") | |
| with gr.Row(): | |
| input_text = gr.Textbox(label="Input Text") | |
| output_text = gr.Textbox(label="Nexus🐦⬛Raven", readonly=True) | |
| input_text.change(converter.process_text, inputs=input_text, outputs=output_text) | |
| return app | |
| if __name__ == "__main__": | |
| app = create_interface() | |
| app.launch() |