File size: 10,346 Bytes
68b32f4 a9685d2 68b32f4 69b35a9 68b32f4 69b35a9 68b32f4 69b35a9 68b32f4 a9685d2 68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import numpy as np
import cv2
import torch
import os
import matplotlib.pyplot as plt
import imageio
from tqdm.auto import tqdm
def find_center_of_mass(array_2d):
"""
Alternative implementation using np.average and meshgrid.
This version is generally faster and more concise.
Args:
array_2d: A 2D numpy array of values between 0 and 1.
Returns:
A tuple (x, y) representing the coordinates of the center of mass.
"""
total_mass = np.sum(array_2d)
if total_mass == 0:
return (np.nan, np.nan)
y_coords, x_coords = np.mgrid[:array_2d.shape[0], :array_2d.shape[1]]
x_center = np.average(x_coords, weights=array_2d)
y_center = np.average(y_coords, weights=array_2d)
return (round(y_center, 4), round(x_center, 4))
def draw_path(x, route, valid_only=False, gt=False, cmap=None):
"""
Draws a path on a maze image based on a given route.
Args:
maze: A numpy array representing the maze image.
route: A list of integers representing the route, where 0 is up, 1 is down, 2 is left, and 3 is right.
valid_only: A boolean indicating whether to only draw valid steps (i.e., steps that don't go into walls).
Returns:
A numpy array representing the maze image with the path drawn in blue.
"""
x = np.copy(x)
start = np.argwhere((x == [1, 0, 0]).all(axis=2))
end = np.argwhere((x == [0, 1, 0]).all(axis=2))
if cmap is None:
cmap = plt.get_cmap('winter') if not valid_only else plt.get_cmap('summer')
# Initialize the current position
current_pos = start[0]
# Draw the path
colors = cmap(np.linspace(0, 1, len(route)))
si = 0
for step in route:
new_pos = current_pos
if step == 0: # Up
new_pos = (current_pos[0] - 1, current_pos[1])
elif step == 1: # Down
new_pos = (current_pos[0] + 1, current_pos[1])
elif step == 2: # Left
new_pos = (current_pos[0], current_pos[1] - 1)
elif step == 3: # Right
new_pos = (current_pos[0], current_pos[1] + 1)
elif step == 4: # Do nothing
pass
else:
raise ValueError("Invalid step: {}".format(step))
# Check if the new position is valid
if valid_only:
try:
if np.all(x[new_pos] == [0,0,0]): # Check if it's a wall
continue # Skip this step if it's invalid
except IndexError:
continue # Skip this step if it's out of bounds
# Draw the step
if new_pos[0] >= 0 and new_pos[0] < x.shape[0] and new_pos[1] >= 0 and new_pos[1] < x.shape[1]:
if not ((x[new_pos] == [1,0,0]).all() or (x[new_pos] == [0,1,0]).all()):
colour = colors[si][:3]
si += 1
x[new_pos] = x[new_pos]*0.5 + colour*0.5
# Update the current position
current_pos = new_pos
# cv2.imwrite('maze2.png', x[:,:,::-1]*255)
return x
def make_maze_gif(inputs, predictions, targets, attention_tracking, save_location, verbose=True):
"""
Expect inputs, predictions, targets as numpy arrays
"""
route_steps = []
route_colours = []
solution_maze = draw_path(np.moveaxis(inputs, 0, -1), targets)
n_heads = attention_tracking.shape[1]
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_1', 'head_2', 'head_3', 'head_4', 'head_5', 'head_6', 'head_7'],
['head_8', 'head_9', 'head_10', 'head_11', 'head_12', 'head_13', 'head_14', 'head_15'],
]
if n_heads == 8:
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_1', 'head_2', 'head_3', 'head_4', 'head_5', 'head_6', 'head_7'],
]
elif n_heads == 4:
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_0', 'head_1', 'head_1', 'head_2', 'head_2', 'head_3', 'head_3'],
['head_0', 'head_0', 'head_1', 'head_1', 'head_2', 'head_2', 'head_3', 'head_3'],
]
img_aspect = 1
figscale = 1
aspect_ratio = (len(mosaic[0]) * figscale, len(mosaic) * figscale * img_aspect) # W, H
route_steps = [np.unravel_index(np.argmax((inputs == np.reshape(np.array([1, 0, 0]), (3, 1, 1))).all(0)), inputs.shape[1:])] # Starting point
frames = []
cmap = plt.get_cmap('gist_rainbow')
cmap_viridis = plt.get_cmap('viridis')
step_linspace = np.linspace(0, 1, predictions.shape[-1]) # For sampling colours
with tqdm(total=predictions.shape[-1], initial=0, leave=True, position=1, dynamic_ncols=True) as pbar:
if verbose: pbar.set_description('Processing frames for maze plotting')
for stepi in np.arange(0, predictions.shape[-1], 1):
fig, axes = plt.subplot_mosaic(mosaic, figsize=aspect_ratio)
for ax in axes.values():
ax.axis('off')
guess_maze = draw_path(np.moveaxis(inputs, 0, -1), predictions.argmax(1)[:,stepi], cmap=cmap)
attention_now = attention_tracking[stepi]
for hi in range(min((attention_tracking.shape[1], 16))):
ax = axes[f'head_{hi}']
attn = attention_tracking[stepi, hi]
attn = (attn - attn.min())/(np.ptp(attn))
ax.imshow(attn, cmap=cmap_viridis)
# Upsample attention just for visualisation
aggregated_attention = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), inputs.shape[-1], mode='bilinear')[0].mean(0).numpy()
# Get approximate center of mass
com_attn = np.copy(aggregated_attention)
com_attn[com_attn < np.percentile(com_attn, 96)] = 0.0
aggregated_attention[aggregated_attention < np.percentile(aggregated_attention, 80)] = 0.0
route_steps.append(find_center_of_mass(com_attn))
colour = list(cmap(step_linspace[stepi]))
route_colours.append(colour)
mapped_attention = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), inputs.shape[-1], mode='bilinear')[0].mean(0).numpy()
mapped_attention = (mapped_attention - mapped_attention.min())/np.ptp(mapped_attention)
# np.clip(guess_maze * (1-mapped_attention[...,np.newaxis]*0.5) + (cmap_viridis(mapped_attention)[:,:,:3] * mapped_attention[...,np.newaxis])*1.3, 0, 1)
overlay_img = np.clip(guess_maze * (1-mapped_attention[...,np.newaxis]*0.6) + (cmap_viridis(mapped_attention)[:,:,:3] * mapped_attention[...,np.newaxis])*1.1, 0, 1)#np.clip((np.copy(guess_maze)*(1-aggregated_attention[:,:,np.newaxis])*0.7 + (aggregated_attention[:,:,np.newaxis]*3 * np.reshape(np.array(colour)[:3], (1, 1, 3)))), 0, 1)
axes['overlay'].imshow(overlay_img)
y_coords, x_coords = zip(*route_steps)
y_coords = inputs.shape[-1] - np.array(list(y_coords))-1
axes['route'].imshow(np.flip(np.moveaxis(inputs, 0, -1), axis=0), origin='lower')
# ax.imshow(np.flip(solution_maze, axis=0), origin='lower')
arrow_scale = 2
for i in range(len(route_steps)-1):
dx = x_coords[i+1] - x_coords[i]
dy = y_coords[i+1] - y_coords[i]
axes['route'].arrow(x_coords[i], y_coords[i], dx, dy, linewidth=2*arrow_scale, head_width=0.2*arrow_scale, head_length=0.3*arrow_scale, fc=route_colours[i], ec=route_colours[i], length_includes_head = True)
fig.tight_layout(pad=0.1) # Adjust spacing
# Render the plot to a numpy array
canvas = fig.canvas
canvas.draw()
image_numpy = np.frombuffer(canvas.buffer_rgba(), dtype='uint8')
image_numpy = image_numpy.reshape(*reversed(canvas.get_width_height()), 4)[:,:,:3] # Get RGB
frames.append(image_numpy) # Add to list for GIF
# fig.savefig(f'{save_location}/frame.png', dpi=200)
plt.close(fig)
# # frame = np.clip((np.copy(guess_maze)*0.5 + (aggregated_attention[:,:,np.newaxis] * np.reshape(np.array(colour)[:3], (1, 1, 3)))), 0, 1)
# frame = torch.nn.functional.interpolate(torch.from_numpy(frame).permute(2,0,1).unsqueeze(0), 256)[0].permute(1,2,0).detach().cpu().numpy()
# frames.append((frame*255).astype(np.uint8))
pbar.update(1)
y_coords, x_coords = zip(*route_steps)
y_coords = inputs.shape[-1] - np.array(list(y_coords))-1
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
ax.imshow(np.flip(np.moveaxis(inputs, 0, -1), axis=0), origin='lower')
# ax.imshow(np.flip(solution_maze, axis=0), origin='lower')
arrow_scale = 2
for i in range(len(route_steps)-1):
dx = x_coords[i+1] - x_coords[i]
dy = y_coords[i+1] - y_coords[i]
plt.arrow(x_coords[i], y_coords[i], dx, dy, linewidth=2*arrow_scale, head_width=0.2*arrow_scale, head_length=0.3*arrow_scale, fc=route_colours[i], ec=route_colours[i], length_includes_head = True)
ax.axis('off')
fig.tight_layout(pad=0)
fig.savefig(f'{save_location}/route_approximation.png', dpi=200)
imageio.mimsave(f'{save_location}/prediction.gif', frames, fps=15, loop=100)
plt.close(fig)
|