File size: 41,654 Bytes
68b32f4 69b35a9 68b32f4 69b35a9 68b32f4 e8dc0c3 68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import argparse
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
from tqdm.auto import tqdm
from data.custom_datasets import MazeImageFolder
from models.ctm import ContinuousThoughtMachine
from models.lstm import LSTMBaseline
from models.ff import FFBaseline
from tasks.mazes.plotting import make_maze_gif
from tasks.image_classification.plotting import plot_neural_dynamics
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import maze_loss
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
import torchvision
torchvision.disable_beta_transforms_warning()
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Selection
parser.add_argument('--model', type=str, required=True, choices=['ctm', 'lstm', 'ff'], help='Model type to train.')
# Model Architecture
# Common across all or most
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--backbone_type', type=str, default='resnet34-2', help='Type of backbone featureiser.') # Default changed from original script
# CTM / LSTM specific
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
parser.add_argument('--heads', type=int, default=8, help='Number of attention heads (CTM, LSTM).') # Default changed
parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
parser.add_argument('--positional_embedding_type', type=str, default='none',
help='Type of positional embedding (CTM, LSTM).', choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# CTM specific
parser.add_argument('--synapse_depth', type=int, default=8, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).') # Default changed
parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch (CTM only).') # Default changed
parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch (CTM only).') # Default changed
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True,
help='Use deep memory (CTM only).')
parser.add_argument('--memory_hidden_dims', type=int, default=32, help='Hidden dimensions of the memory if using deep memory (CTM only).') # Default changed
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
# LSTM specific
parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).') # Added LSTM arg
# Task Specific Args (Common to all models for this task)
parser.add_argument('--maze_route_length', type=int, default=100, help='Length to truncate targets.')
parser.add_argument('--cirriculum_lookahead', type=int, default=5, help='How far to look ahead for cirriculum.')
# Training
parser.add_argument('--expand_range', action=argparse.BooleanOptionalAction, default=True, help='Mazes between 0 and 1 = False. Between -1 and 1 = True. Legacy checkpoints use 0 and 1.')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training.') # Default changed
parser.add_argument('--batch_size_test', type=int, default=64, help='Batch size for testing.') # Default changed
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for the model.') # Default changed
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--num_workers_train', type=int, default=0, help='Num workers training.') # Renamed from num_workers, kept default
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components.')
# Logging and Saving
parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
parser.add_argument('--dataset', type=str, default='mazes-medium', help='Dataset to use.', choices=['mazes-medium', 'mazes-large', 'mazes-small'])
parser.add_argument('--data_root', type=str, default='data/mazes', help='Data root.')
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
parser.add_argument('--ignore_metrics_when_reloading', action=argparse.BooleanOptionalAction, default=False, help='Ignore metrics when reloading (for debugging)?') # Added back
# Tracking
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval') # Default changed
# Device
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
args = parser.parse_args()
return args
if __name__=='__main__':
# Hosuekeeping
args = parse_args()
set_seed(args.seed, False)
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
assert args.dataset in ['mazes-medium', 'mazes-large', 'mazes-small']
prediction_reshaper = [args.maze_route_length, 5] # Problem specific
args.out_dims = args.maze_route_length * 5 # Output dimension before reshaping
# For total reproducibility
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
# Configure device string (support MPS on macOS)
if args.device[0] != -1:
device = f'cuda:{args.device[0]}'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
print(f'Running model {args.model} on {device}')
# Build model conditionally
model = None
if args.model == 'ctm':
model = ContinuousThoughtMachine(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
elif args.model == 'lstm':
model = LSTMBaseline(
num_layers=args.num_layers,
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
).to(device)
elif args.model == 'ff':
model = FFBaseline(
d_model=args.d_model,
backbone_type=args.backbone_type,
out_dims=args.out_dims,
dropout=args.dropout,
).to(device)
else:
raise ValueError(f"Unknown model type: {args.model}")
try:
# Determine pseudo input shape based on dataset
h_w = 39 if args.dataset in ['mazes-small', 'mazes-medium'] else 99 # Example dimensions
pseudo_inputs = torch.zeros((1, 3, h_w, h_w), device=device).float()
model(pseudo_inputs)
except Exception as e:
print(f"Warning: Pseudo forward pass failed: {e}")
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
# Data
dataset_mean = [0,0,0] # For plotting later
dataset_std = [1,1,1]
which_maze = args.dataset.split('-')[-1]
data_root = f'{args.data_root}/{which_maze}'
train_data = MazeImageFolder(root=f'{data_root}/train/', which_set='train', maze_route_length=args.maze_route_length, expand_range=args.expand_range)
test_data = MazeImageFolder(root=f'{data_root}/test/', which_set='test', maze_route_length=args.maze_route_length, expand_range=args.expand_range)
num_workers_test = 1 # Defaulting to 1, can be changed
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers_train, drop_last=True)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test, drop_last=False)
# For lazy modules so that we can get param count
model.train()
# Optimizer and scheduler
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking
start_iter = 0
train_losses = []
test_losses = []
train_accuracies = [] # Per tick/step accuracy list
test_accuracies = []
train_accuracies_most_certain = [] # Accuracy, fine-grained
test_accuracies_most_certain = []
train_accuracies_most_certain_permaze = [] # Full maze accuracy
test_accuracies_most_certain_permaze = []
iters = []
scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
if args.reload:
checkpoint_path = f'{args.log_dir}/checkpoint.pt'
if os.path.isfile(checkpoint_path):
print(f'Reloading from: {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
if not args.reload_model_only:
print('Reloading optimizer etc.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict']) # Load scaler state
start_iter = checkpoint['iteration']
if not args.ignore_metrics_when_reloading:
train_losses = checkpoint['train_losses']
test_losses = checkpoint['test_losses']
train_accuracies = checkpoint['train_accuracies']
test_accuracies = checkpoint['test_accuracies']
iters = checkpoint['iters']
train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']
train_accuracies_most_certain_permaze = checkpoint['train_accuracies_most_certain_permaze']
test_accuracies_most_certain_permaze = checkpoint['test_accuracies_most_certain_permaze']
else:
print("Ignoring metrics history upon reload.")
else:
print('Only reloading model!')
if 'torch_rng_state' in checkpoint:
# Reset seeds
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if args.do_compile:
print('Compiling...')
if hasattr(model, 'backbone'):
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
# Compile synapses only for CTM
if args.model == 'ctm':
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
# Training
iterator = iter(trainloader)
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
for bi in range(start_iter, args.training_iterations):
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device)
targets = targets.to(device) # Shape (B, SeqLength)
# All for nice metric printing:
loss = None
accuracy_finegrained = None # Per-step accuracy at chosen tick
where_most_certain_val = -1.0 # Default value
where_most_certain_std = 0.0
where_most_certain_min = -1
where_most_certain_max = -1
upto_where_mean = -1.0
upto_where_std = 0.0
upto_where_min = -1
upto_where_max = -1
# Model-specific forward, reshape, and loss calculation
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile: # CUDAGraph marking applied if compiling any model
torch.compiler.cudagraph_mark_step_begin()
if args.model == 'ctm':
# CTM output: (B, SeqLength*5, Ticks), Certainties: (B, Ticks)
predictions_raw, certainties, synchronisation = model(inputs)
# Reshape predictions: (B, SeqLength, 5, Ticks)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1))
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=True)
# Accuracy uses predictions[B, S, C, T] indexed at where_most_certain[B] -> gives (B, S, C) -> argmax(2) -> (B,S)
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'lstm':
# LSTM output: (B, SeqLength*5, Ticks), Certainties: (B, Ticks)
predictions_raw, certainties, synchronisation = model(inputs)
# Reshape predictions: (B, SeqLength, 5, Ticks)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1))
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False)
# where_most_certain should be -1 (last tick) here. Accuracy calc follows same logic.
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'ff':
# Assume FF output: (B, SeqLength*5)
predictions_raw = model(inputs)
# Reshape predictions: (B, SeqLength, 5)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5)
# FF has no certainties, pass None. maze_loss must handle this.
# Unsqueeze predictions for compatibility with maze loss calcluation
loss, where_most_certain, upto_where = maze_loss(predictions.unsqueeze(-1), None, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False)
# where_most_certain should be -1 here. Accuracy uses 3D prediction tensor.
accuracy_finegrained = (predictions.argmax(2) == targets).float().mean().item()
# Extract stats from loss outputs if they are tensors
if torch.is_tensor(where_most_certain):
where_most_certain_val = where_most_certain.float().mean().item()
where_most_certain_std = where_most_certain.float().std().item()
where_most_certain_min = where_most_certain.min().item()
where_most_certain_max = where_most_certain.max().item()
elif isinstance(where_most_certain, int): # Handle case where it might return -1 directly
where_most_certain_val = float(where_most_certain)
where_most_certain_min = where_most_certain
where_most_certain_max = where_most_certain
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0: # Check if it's a list/array
upto_where_mean = np.mean(upto_where)
upto_where_std = np.std(upto_where)
upto_where_min = np.min(upto_where)
upto_where_max = np.max(upto_where)
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
# Conditional Tqdm Description
pbar_desc = f'Loss={loss.item():0.3f}. Acc(step)={accuracy_finegrained:0.3f}. LR={current_lr:0.6f}.'
if args.model in ['ctm', 'lstm'] or torch.is_tensor(where_most_certain): # Show stats if available
pbar_desc += f' Where_certain={where_most_certain_val:0.2f}+-{where_most_certain_std:0.2f} ({where_most_certain_min:d}<->{where_most_certain_max:d}).'
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0:
pbar_desc += f' Path pred stats: {upto_where_mean:0.2f}+-{upto_where_std:0.2f} ({upto_where_min:d} --> {upto_where_max:d})'
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
# Metrics tracking and plotting
if bi%args.track_every==0 and (bi != 0 or args.reload_model_only):
model.eval() # Use eval mode for consistency during tracking
with torch.inference_mode(): # Use inference mode for tracking
# --- Quantitative Metrics ---
iters.append(bi)
# Re-initialize metric lists for this evaluation step
current_train_losses_eval = []
current_test_losses_eval = []
current_train_accuracies_eval = []
current_test_accuracies_eval = []
current_train_accuracies_most_certain_eval = []
current_test_accuracies_most_certain_eval = []
current_train_accuracies_most_certain_permaze_eval = []
current_test_accuracies_most_certain_permaze_eval = []
# TRAIN METRICS
pbar.set_description('Tracking: Computing TRAIN metrics')
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test) # Use consistent num_workers
all_targets_list = []
all_predictions_list = [] # Per step/tick predictions argmax (N, S, T) or (N, S)
all_predictions_most_certain_list = [] # Predictions at chosen step/tick argmax (N, S)
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy()) # N x S
# Model-specific forward, reshape, loss for evaluation
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,C,T -> argmax class -> B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,C,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S (at last tick)
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5) # B,S,C
loss, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S
all_predictions_most_certain_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S (same as above for FF)
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1 : break
pbar_inner.set_description(f'Computing metrics for train (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list) # N, S
all_predictions = np.concatenate(all_predictions_list) # N, S, T or N, S
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list) # N, S
train_losses.append(np.mean(all_losses))
# Calculate per step/tick accuracy averaged over batches
if args.model in ['ctm', 'lstm']:
# all_predictions shape (N, S, T), all_targets shape (N, S) -> compare targets to each tick prediction
train_accuracies.append(np.mean(all_predictions == all_targets[:,:,np.newaxis], axis=0)) # Mean over N -> (S, T)
else: # FF
# all_predictions shape (N, S), all_targets shape (N, S)
train_accuracies.append(np.mean(all_predictions == all_targets, axis=0)) # Mean over N -> (S,)
# Calculate accuracy at chosen step/tick ("most certain") averaged over all steps and batches
train_accuracies_most_certain.append((all_targets == all_predictions_most_certain).mean()) # Scalar
# Calculate full maze accuracy at chosen step/tick averaged over batches
train_accuracies_most_certain_permaze.append((all_targets == all_predictions_most_certain).reshape(all_targets.shape[0], -1).all(-1).mean()) # Scalar
# TEST METRICS
pbar.set_description('Tracking: Computing TEST metrics')
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
all_targets_list = []
all_predictions_list = []
all_predictions_most_certain_list = []
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy())
# Model-specific forward, reshape, loss for evaluation
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S (at last tick)
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5) # B,S,C
loss, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S
all_predictions_most_certain_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S (same as above for FF)
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
pbar_inner.set_description(f'Computing metrics for test (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list)
all_predictions = np.concatenate(all_predictions_list)
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
test_losses.append(np.mean(all_losses))
# Calculate per step/tick accuracy
if args.model in ['ctm', 'lstm']:
test_accuracies.append(np.mean(all_predictions == all_targets[:,:,np.newaxis], axis=0)) # -> (S, T)
else: # FF
test_accuracies.append(np.mean(all_predictions == all_targets, axis=0)) # -> (S,)
# Calculate "most certain" accuracy
test_accuracies_most_certain.append((all_targets == all_predictions_most_certain).mean()) # Scalar
# Calculate full maze accuracy
test_accuracies_most_certain_permaze.append((all_targets == all_predictions_most_certain).reshape(all_targets.shape[0], -1).all(-1).mean()) # Scalar
# --- Plotting ---
# Accuracy Plot (Handling different dimensions)
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
cm = sns.color_palette("viridis", as_cmap=True)
# Plot per step/tick accuracy
# train_accuracies is List[(S, T)] or List[(S,)]
# We need to average over S dimension for plotting
train_acc_plot = [np.mean(acc_s) for acc_s in train_accuracies] # List[Scalar] or List[Scalar] after mean
test_acc_plot = [np.mean(acc_s) for acc_s in test_accuracies] # List[Scalar] or List[Scalar] after mean
axacc_train.plot(iters, train_acc_plot, 'g-', alpha=0.5, label='Avg Step Acc')
axacc_test.plot(iters, test_acc_plot, 'g-', alpha=0.5, label='Avg Step Acc')
# Plot most certain accuracy
axacc_train.plot(iters, train_accuracies_most_certain, 'k--', alpha=0.7, label='Most Certain (Avg Step)')
axacc_test.plot(iters, test_accuracies_most_certain, 'k--', alpha=0.7, label='Most Certain (Avg Step)')
# Plot full maze accuracy
axacc_train.plot(iters, train_accuracies_most_certain_permaze, 'r-', alpha=0.6, label='Full Maze')
axacc_test.plot(iters, test_accuracies_most_certain_permaze, 'r-', alpha=0.6, label='Full Maze')
axacc_train.set_title('Train Accuracy')
axacc_test.set_title('Test Accuracy')
axacc_train.legend(loc='lower right')
axacc_test.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
axacc_train.set_ylim([0, 1]) # Set Ylim for accuracy
axacc_test.set_ylim([0, 1])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
# Loss Plot
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]:.4f}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]:.4f}')
axloss.legend(loc='upper right')
axloss.set_xlim([0, args.training_iterations])
axloss.set_ylim(bottom=0)
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
# --- Visualization Section (Conditional) ---
if args.model in ['ctm', 'lstm']:
# try:
inputs_viz, targets_viz = next(iter(testloader))
inputs_viz = inputs_viz.to(device)
targets_viz = targets_viz.to(device)
# Find longest path in batch for potentially better visualization
longest_index = (targets_viz!=4).sum(-1).argmax() # Action 4 assumed padding/end
# Track internal states
predictions_viz_raw, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
# Reshape predictions (assuming raw is B, D, T)
predictions_viz = predictions_viz_raw.reshape(predictions_viz_raw.size(0), -1, 5, predictions_viz_raw.size(-1)) # B, S, C, T
att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
attention_tracking_viz = attention_tracking_viz.reshape(
attention_tracking_viz.shape[0],
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
# Plot dynamics (common plotting function)
plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)
# Create maze GIF (task-specific plotting)
make_maze_gif((inputs_viz[longest_index].detach().cpu().numpy()+1)/2,
predictions_viz[longest_index].detach().cpu().numpy(), # Pass reshaped B,S,C,T -> S,C,T
targets_viz[longest_index].detach().cpu().numpy(), # S
attention_tracking_viz[:, longest_index], # Pass T, (H), H, W
args.log_dir)
# except Exception as e:
# print(f"Visualization failed for model {args.model}: {e}")
# --- End Visualization ---
model.train() # Switch back to train mode
# Save model checkpoint
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
pbar.set_description('Saving model checkpoint...')
checkpoint_data = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(), # Save scaler state
'iteration': bi,
# Save all tracked metrics
'train_losses': train_losses,
'test_losses': test_losses,
'train_accuracies': train_accuracies, # List of (S, T) or (S,) arrays
'test_accuracies': test_accuracies, # List of (S, T) or (S,) arrays
'train_accuracies_most_certain': train_accuracies_most_certain, # List of scalars
'test_accuracies_most_certain': test_accuracies_most_certain, # List of scalars
'train_accuracies_most_certain_permaze': train_accuracies_most_certain_permaze, # List of scalars
'test_accuracies_most_certain_permaze': test_accuracies_most_certain_permaze, # List of scalars
'iters': iters,
'args': args, # Save args used for this run
# RNG states
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
}
torch.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
pbar.update(1) |