File size: 16,575 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import re
import os
import torch
from torch import optim
import numpy as np
import matplotlib.pyplot as plt
import argparse
from collections import defaultdict
from scipy.interpolate import interp1d
from collections import defaultdict
import csv
import multiprocessing

from tasks.rl.train import Agent, make_env_classic_control, make_env_minigrid, load_model
from utils.housekeeping import set_seed
from tasks.rl.utils import combine_tracking_data
from tasks.rl.plotting import make_rl_gif
from tasks.image_classification.plotting import plot_neural_dynamics

import seaborn as sns
sns.set_palette("hls")
sns.set_style('darkgrid')


def parse_args():
    parser = argparse.ArgumentParser(description='RL Analysis')
    parser.add_argument('--log_dir', type=str, default='checkpoints/rl', help='Directory to save logs.')
    parser.add_argument('--scale', type=float, default=0.5, help='Scaling factor for plot size')
    parser.add_argument('--num_eval_envs', type=int, default=10, help='Number of evaluation environments') 
    parser.add_argument('--seed', type=int, default=0, help='Random seed to use') 
    parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')

    return parser.parse_args()

def get_checkpoint_paths_for_environment(environment, log_dir):
    checkpoint_files = []
    if not os.path.exists(log_dir):
        raise ValueError(f"Log directory '{log_dir}' does not exist.")
    for root, dirs, files in os.walk(log_dir):
        if environment in root:
            for file in files:
                if file == "checkpoint.pt":
                    checkpoint_files.append(os.path.join(root, file))
    return checkpoint_files

def load_checkpoint(checkpoint_path, device):
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
    print(f"Loaded checkpoint from {checkpoint_path}.")
    return checkpoint

def get_global_steps_from_checkpoint(checkpoint):
    return checkpoint.get('global_steps_tracking', [])

def get_episode_rewards_from_checkpoint(checkpoint):
    return checkpoint.get('episode_rewards_tracking', [])

def get_episode_lengths_from_checkpoint(checkpoint):
    return checkpoint.get('episode_lengths_tracking', [])

def get_human_readable_name(checkpoint_path):
    name_map = {
        "lstm_1": "LSTM, 1 Iters.",
        "ctm_1": "CTM, 1 Iters.",
        "lstm_2": "LSTM, 2 Iters.",
        "ctm_2": "CTM, 2 Iters.",
        "lstm_5": "LSTM, 5 Iters.",
        "ctm_5": "CTM, 5 Iters.",
    }
    pattern = r"checkpoints/.+?/run\d+/([a-zA-Z0-9]+_[a-zA-Z0-9]+)/checkpoint\.pt"
    match = re.search(pattern, checkpoint_path)
    if match:
        config_key = match.group(1)
        human_name = name_map.get(config_key, config_key)
        return config_key, human_name
    else:
        raise ValueError(f"Could not extract human readable name from {checkpoint_path}")

def compute_mean_std_over_runs(steps_list, values_list, num_interpolation_points, smooth_window):
    common_steps = np.linspace(
        max(min(steps[0] for steps in steps_list), 1),
        min(max(steps[-1] for steps in steps_list), 400_000_000),
        num_interpolation_points
    )

    interpolated = [
        interp1d(steps, values, bounds_error=False, fill_value='extrapolate')(common_steps)
        for steps, values in zip(steps_list, values_list)
    ]

    mean = np.mean(interpolated, axis=0)
    std = np.std(interpolated, axis=0)

    if smooth_window > 0:
        # Compute how many points the smoothing window covers
        step_range = common_steps[-1] - common_steps[0]
        delta_step = step_range / (num_interpolation_points - 1)
        window_size = int((step_range * smooth_window) / delta_step)

        if window_size < 1:
            window_size = 1
        if window_size % 2 == 0:
            window_size += 1

        kernel = np.ones(window_size) / window_size
        mean = np.convolve(mean, kernel, mode='same')
        std = np.convolve(std, kernel, mode='same')

    return common_steps, mean, std

def extract_model_and_iters(name):
    """Extract model type and iteration number from name like 'CTM, 2 Iters.'"""
    parts = name.upper().split(",")
    model_type = parts[0].strip()
    num_iters = int(parts[1].strip().split()[0]) if len(parts) > 1 else 0
    return model_type, num_iters

def plot(grouped_data, scale=1, value_key='rewards', ylabel="Rewards", title="Episode Rewards", save_path="episode_rewards_avg.png"):

    fig, ax = plt.subplots(figsize=(10*scale, 5*scale))

    iter_groups = defaultdict(list)
    for key, data in grouped_data.items():
        model_type, num_iters = extract_model_and_iters(data['name'])
        iter_groups[num_iters].append((model_type, key, data))

    final_order = []
    for iters in sorted(iter_groups.keys()):
        for model_type in sorted(iter_groups[iters], key=lambda x: x[0]):
            final_order.append((model_type[1], model_type[2]))

    colors = sns.color_palette("hls", n_colors=len(final_order))
    max_steps = 0
    window_length = 0.01

    for i, (key, data) in enumerate(final_order):
        steps_list = data['steps']
        flat_steps = [step for run in steps_list for step in run]
        if len(flat_steps) > 0:
            run_max = max(flat_steps)
            if run_max > max_steps:
                max_steps = run_max

        values_list = data[value_key]
        label = data['name']

        num_interpolation_points = 200_000

        common_steps, mean, std = compute_mean_std_over_runs(steps_list, values_list, num_interpolation_points, window_length)
        color = colors[i]
        linestyle = '--' if 'LSTM' in label.upper() else '-'

        ax.plot(common_steps, mean, label=label, color=color, linestyle=linestyle)
        ax.fill_between(common_steps, mean - std, mean + std, alpha=0.1, color=color)

    ax.set_xlabel("Environment Steps")
    ax.set_ylabel(ylabel)
    ax.grid(True, alpha=0.5)
    ax.set_xlim(0, int(max_steps*(1-window_length)))
    ax.legend()
    fig.tight_layout(pad=0.1)
    fig.savefig(save_path, dpi=300)
    fig.savefig(save_path.replace(".png", ".pdf"), format="pdf")
    plt.close(fig)

def create_training_curves(save_dir, log_dir, device):
    for env_id in ("CartPole-v1", "Acrobot-v1", "MiniGrid-FourRooms-v0"):
        os.makedirs(f"{save_dir}/{env_id}", exist_ok=True)
        checkpoint_paths = get_checkpoint_paths_for_environment(env_id, log_dir)
        grouped_data = defaultdict(lambda: {
            'steps': [],
            'rewards': [],
            'lengths': [],
            'name': ''
        })

        for checkpoint_path in checkpoint_paths:
            checkpoint = load_checkpoint(checkpoint_path, device)
            global_steps = get_global_steps_from_checkpoint(checkpoint)
            episode_rewards = get_episode_rewards_from_checkpoint(checkpoint)
            episode_lengths = get_episode_lengths_from_checkpoint(checkpoint)
            config_key, human_readable_name = get_human_readable_name(checkpoint_path)

            if global_steps and episode_rewards and episode_lengths:
                grouped_data[config_key]['steps'].append(global_steps)
                grouped_data[config_key]['rewards'].append(episode_rewards)
                grouped_data[config_key]['lengths'].append(episode_lengths)
                grouped_data[config_key]['name'] = human_readable_name

        if grouped_data:
            plot(grouped_data, scale=args.scale, value_key='rewards', ylabel="Episode Reward", title="Avg Episode Rewards ± Std", save_path=f"{save_dir}/{env_id}/episode_rewards_avg.png")
            plot(grouped_data, scale=args.scale, value_key='lengths', ylabel="Episode Length", title="Avg Episode Lengths ± Std", save_path=f"{save_dir}/{env_id}/episode_lengths_avg.png")
        else:
            print("No valid checkpoint data found.")
    pass

def filter_checkpoints(checkpoint_paths, iters, arch, run):
    filtered_iters = filter_checkpoint_by_iters(checkpoint_paths, iters)
    filtered_arch = filter_checkpoint_by_arch(filtered_iters, arch)
    filtered_run = filter_checkpoint_by_run(filtered_arch, run)
    return filtered_run

def filter_checkpoint_by_iters(checkpoint_paths, iters):
    return [path for path in checkpoint_paths if f"_{iters}" in path]

def filter_checkpoint_by_arch(checkpoint_paths, arch):
    return [path for path in checkpoint_paths if f"{arch}" in path]

def filter_checkpoint_by_run(checkpoint_paths, run):
    return [path for path in checkpoint_paths if f"run{run}" in path]

def get_training_data_from_checkpoint_path(checkpoint_path, device):
    checkpoint = load_checkpoint(checkpoint_path, device)
    global_step = checkpoint.get('global_step', 0)
    training_iteration = checkpoint.get('training_iteration', 0)
    episode_rewards_tracking = checkpoint.get('episode_rewards_tracking', [])
    episode_lengths_tracking = checkpoint.get('episode_lengths_tracking', [])
    global_steps_tracking = checkpoint.get('global_steps_tracking', [])
    model_args = checkpoint.get('args', None)
    return global_step, training_iteration, episode_rewards_tracking, episode_lengths_tracking, global_steps_tracking, model_args

def prepare_csv(csv_filepath):
    if os.path.exists(csv_filepath):
        os.remove(csv_filepath)
    with open(csv_filepath, mode='a', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['arch', 'iters', 'run', 'mean', 'std'])
    pass

def parse_env_id(env_id):
    if env_id == "CartPole-v1":
        return "cartpole"
    elif env_id == "Acrobot-v1":
        return "acrobot"
    elif env_id == "MiniGrid-FourRooms-v0":
        return "4rooms"
    else:
        raise ValueError(f"Environment {env_id} not supported.")

def get_size_action_space(env_id):
    if env_id == "CartPole-v1":
        return 2
    elif env_id == "Acrobot-v1":
        return 3
    elif env_id == "MiniGrid-FourRooms-v0":
        return 7
    else:
        raise ValueError(f"Environment {env_id} not supported.")

def prepare_env(env_id, max_environment_steps, mask_velocity, render_mode):
    if env_id in ("CartPole-v1", "Acrobot-v1"):
        return(make_env_classic_control(env_id, max_environment_steps, mask_velocity=mask_velocity, render_mode=render_mode)())
    elif "MiniGrid" in env_id:
        return(make_env_minigrid(env_id, max_environment_steps)())
    else:
        raise NotImplementedError(f"Environment {env_id} not supported.")

def create_episode_length_csv_and_activation_plots(save_dir, args):
    for env_id in ("CartPole-v1", "Acrobot-v1", "MiniGrid-FourRooms-v0"):
        size_action_space = get_size_action_space(env_id)
        csv_filepath = f'{save_dir}/{env_id}/episode_lengths.csv'
        if os.path.exists(csv_filepath):
            os.remove(csv_filepath)
        os.makedirs(os.path.dirname(csv_filepath), exist_ok=True)
        prepare_csv(csv_filepath)

        checkpoint_paths = get_checkpoint_paths_for_environment(env_id, args.log_dir)
        ARCHS_TO_TEST = ["ctm", "lstm"]
        ITERS_TO_TEST = [1, 2, 5]
        RUNS_TO_TEST = [1, 2, 3]
        for arch in ARCHS_TO_TEST:
            for iters in ITERS_TO_TEST:
                episode_lengths = []
                for run in RUNS_TO_TEST:
                    
                    activation_plots_path = f'{save_dir}/{env_id}/arch_{arch}_iters_{iters}_run_{run}'
                    os.makedirs(activation_plots_path, exist_ok=True)

                    checkpoints = filter_checkpoints(checkpoint_paths, iters, arch, run)
                    if not checkpoints:
                        print(f"Skipping: no checkpoint found for {env_id} | iters={iters} | arch={arch} | run={run}")
                        continue
                    
                    _, _, _, _, _, model_args = get_training_data_from_checkpoint_path(checkpoints[0], device)
                    model_args.log_dir = f"{args.log_dir}/{env_id}"

                    agent = Agent(size_action_space, model_args, device).to(device)
                    optimizer = optim.Adam(agent.parameters(), lr=model_args.lr, eps=1e-5)

                    _, _, _, _, _, _ = load_model(agent, optimizer, checkpoints[0], device)

                    eval_env = prepare_env(model_args.env_id, model_args.max_environment_steps, mask_velocity=model_args.mask_velocity, render_mode="rgb_array")

                    for idx in range(args.num_eval_envs):
                        eval_next_obs, _ = eval_env.reset(seed=idx)
                        eval_next_done = False
                        eval_state = agent.get_initial_state(1)
                        tracking_data_by_world_step = []
                        for environment_step in range(model_args.max_environment_steps):
                            with torch.no_grad():
                                action, _, _, value, eval_state, tracking_data, action_logits, action_probs = agent.get_action_and_value(
                                    torch.Tensor(eval_next_obs).to(device).unsqueeze(0),
                                    eval_state,
                                    torch.Tensor([eval_next_done]).to(device),
                                    track=True
                                )
                            eval_next_obs, reward, termination, truncation, _ = eval_env.step(action.cpu().numpy()[0])
                            eval_next_done = termination or truncation

                            tracking_data['actions'] = np.tile(action.detach().cpu().numpy(), (model_args.iterations)) # Shape T
                            tracking_data['values'] = np.tile(value.squeeze(-1).detach().cpu().numpy(), (model_args.iterations)) # Shape T
                            tracking_data['action_logits'] = np.tile(action_logits.detach().cpu().numpy(), (model_args.iterations, 1)) # Shape T, A
                            tracking_data['action_probs'] = np.tile(action_probs.detach().cpu().numpy(), (model_args.iterations, 1))# Shape T, A
                            tracking_data['rewards'] = np.tile(np.array(reward), (model_args.iterations)) # Shape T
                            tracking_data['inputs'] = np.tile(np.array(eval_env.render()), (model_args.iterations, 1, 1, 1)) # Shape T, H, W, C

                            tracking_data_by_world_step.append(tracking_data)

                            if eval_next_done:
                                break
                        
                        eval_env.close()

                        combined_tracking_data = combine_tracking_data(tracking_data_by_world_step)

                        n_to_plot = 80 if combined_tracking_data['post_activations'].shape[-1] < 100 else 100
                        if idx==0:
                            plot_neural_dynamics(combined_tracking_data['post_activations'], n_to_plot, activation_plots_path, axis_snap=True)
                            process = multiprocessing.Process(
                                target=make_rl_gif,
                                args=(
                                    combined_tracking_data['action_logits'],
                                    combined_tracking_data['action_probs'],
                                    combined_tracking_data['actions'],
                                    combined_tracking_data['values'],
                                    combined_tracking_data['rewards'],
                                    combined_tracking_data['pre_activations'],
                                    combined_tracking_data['post_activations'],
                                    combined_tracking_data['inputs'],
                                    f"{activation_plots_path}/eval_output_val_{idx}.gif"
                                )
                            )
                            process.start()

                        episode_lengths.append(environment_step+1)

                    if episode_lengths:
                        mean = np.mean(episode_lengths)
                        std = np.std(episode_lengths)

                        with open(csv_filepath, mode='a', newline='') as f:
                            writer = csv.writer(f)
                            writer.writerow([arch, iters, run, mean, std])

if __name__ == '__main__':
    args = parse_args()

    set_seed(args.seed)

    save_dir = "tasks/rl/analysis/outputs"
    os.makedirs(save_dir, exist_ok=True)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    create_training_curves(save_dir, args.log_dir, device)
    create_episode_length_csv_and_activation_plots(save_dir, args)