File size: 16,575 Bytes
68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import re
import os
import torch
from torch import optim
import numpy as np
import matplotlib.pyplot as plt
import argparse
from collections import defaultdict
from scipy.interpolate import interp1d
from collections import defaultdict
import csv
import multiprocessing
from tasks.rl.train import Agent, make_env_classic_control, make_env_minigrid, load_model
from utils.housekeeping import set_seed
from tasks.rl.utils import combine_tracking_data
from tasks.rl.plotting import make_rl_gif
from tasks.image_classification.plotting import plot_neural_dynamics
import seaborn as sns
sns.set_palette("hls")
sns.set_style('darkgrid')
def parse_args():
parser = argparse.ArgumentParser(description='RL Analysis')
parser.add_argument('--log_dir', type=str, default='checkpoints/rl', help='Directory to save logs.')
parser.add_argument('--scale', type=float, default=0.5, help='Scaling factor for plot size')
parser.add_argument('--num_eval_envs', type=int, default=10, help='Number of evaluation environments')
parser.add_argument('--seed', type=int, default=0, help='Random seed to use')
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
return parser.parse_args()
def get_checkpoint_paths_for_environment(environment, log_dir):
checkpoint_files = []
if not os.path.exists(log_dir):
raise ValueError(f"Log directory '{log_dir}' does not exist.")
for root, dirs, files in os.walk(log_dir):
if environment in root:
for file in files:
if file == "checkpoint.pt":
checkpoint_files.append(os.path.join(root, file))
return checkpoint_files
def load_checkpoint(checkpoint_path, device):
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
print(f"Loaded checkpoint from {checkpoint_path}.")
return checkpoint
def get_global_steps_from_checkpoint(checkpoint):
return checkpoint.get('global_steps_tracking', [])
def get_episode_rewards_from_checkpoint(checkpoint):
return checkpoint.get('episode_rewards_tracking', [])
def get_episode_lengths_from_checkpoint(checkpoint):
return checkpoint.get('episode_lengths_tracking', [])
def get_human_readable_name(checkpoint_path):
name_map = {
"lstm_1": "LSTM, 1 Iters.",
"ctm_1": "CTM, 1 Iters.",
"lstm_2": "LSTM, 2 Iters.",
"ctm_2": "CTM, 2 Iters.",
"lstm_5": "LSTM, 5 Iters.",
"ctm_5": "CTM, 5 Iters.",
}
pattern = r"checkpoints/.+?/run\d+/([a-zA-Z0-9]+_[a-zA-Z0-9]+)/checkpoint\.pt"
match = re.search(pattern, checkpoint_path)
if match:
config_key = match.group(1)
human_name = name_map.get(config_key, config_key)
return config_key, human_name
else:
raise ValueError(f"Could not extract human readable name from {checkpoint_path}")
def compute_mean_std_over_runs(steps_list, values_list, num_interpolation_points, smooth_window):
common_steps = np.linspace(
max(min(steps[0] for steps in steps_list), 1),
min(max(steps[-1] for steps in steps_list), 400_000_000),
num_interpolation_points
)
interpolated = [
interp1d(steps, values, bounds_error=False, fill_value='extrapolate')(common_steps)
for steps, values in zip(steps_list, values_list)
]
mean = np.mean(interpolated, axis=0)
std = np.std(interpolated, axis=0)
if smooth_window > 0:
# Compute how many points the smoothing window covers
step_range = common_steps[-1] - common_steps[0]
delta_step = step_range / (num_interpolation_points - 1)
window_size = int((step_range * smooth_window) / delta_step)
if window_size < 1:
window_size = 1
if window_size % 2 == 0:
window_size += 1
kernel = np.ones(window_size) / window_size
mean = np.convolve(mean, kernel, mode='same')
std = np.convolve(std, kernel, mode='same')
return common_steps, mean, std
def extract_model_and_iters(name):
"""Extract model type and iteration number from name like 'CTM, 2 Iters.'"""
parts = name.upper().split(",")
model_type = parts[0].strip()
num_iters = int(parts[1].strip().split()[0]) if len(parts) > 1 else 0
return model_type, num_iters
def plot(grouped_data, scale=1, value_key='rewards', ylabel="Rewards", title="Episode Rewards", save_path="episode_rewards_avg.png"):
fig, ax = plt.subplots(figsize=(10*scale, 5*scale))
iter_groups = defaultdict(list)
for key, data in grouped_data.items():
model_type, num_iters = extract_model_and_iters(data['name'])
iter_groups[num_iters].append((model_type, key, data))
final_order = []
for iters in sorted(iter_groups.keys()):
for model_type in sorted(iter_groups[iters], key=lambda x: x[0]):
final_order.append((model_type[1], model_type[2]))
colors = sns.color_palette("hls", n_colors=len(final_order))
max_steps = 0
window_length = 0.01
for i, (key, data) in enumerate(final_order):
steps_list = data['steps']
flat_steps = [step for run in steps_list for step in run]
if len(flat_steps) > 0:
run_max = max(flat_steps)
if run_max > max_steps:
max_steps = run_max
values_list = data[value_key]
label = data['name']
num_interpolation_points = 200_000
common_steps, mean, std = compute_mean_std_over_runs(steps_list, values_list, num_interpolation_points, window_length)
color = colors[i]
linestyle = '--' if 'LSTM' in label.upper() else '-'
ax.plot(common_steps, mean, label=label, color=color, linestyle=linestyle)
ax.fill_between(common_steps, mean - std, mean + std, alpha=0.1, color=color)
ax.set_xlabel("Environment Steps")
ax.set_ylabel(ylabel)
ax.grid(True, alpha=0.5)
ax.set_xlim(0, int(max_steps*(1-window_length)))
ax.legend()
fig.tight_layout(pad=0.1)
fig.savefig(save_path, dpi=300)
fig.savefig(save_path.replace(".png", ".pdf"), format="pdf")
plt.close(fig)
def create_training_curves(save_dir, log_dir, device):
for env_id in ("CartPole-v1", "Acrobot-v1", "MiniGrid-FourRooms-v0"):
os.makedirs(f"{save_dir}/{env_id}", exist_ok=True)
checkpoint_paths = get_checkpoint_paths_for_environment(env_id, log_dir)
grouped_data = defaultdict(lambda: {
'steps': [],
'rewards': [],
'lengths': [],
'name': ''
})
for checkpoint_path in checkpoint_paths:
checkpoint = load_checkpoint(checkpoint_path, device)
global_steps = get_global_steps_from_checkpoint(checkpoint)
episode_rewards = get_episode_rewards_from_checkpoint(checkpoint)
episode_lengths = get_episode_lengths_from_checkpoint(checkpoint)
config_key, human_readable_name = get_human_readable_name(checkpoint_path)
if global_steps and episode_rewards and episode_lengths:
grouped_data[config_key]['steps'].append(global_steps)
grouped_data[config_key]['rewards'].append(episode_rewards)
grouped_data[config_key]['lengths'].append(episode_lengths)
grouped_data[config_key]['name'] = human_readable_name
if grouped_data:
plot(grouped_data, scale=args.scale, value_key='rewards', ylabel="Episode Reward", title="Avg Episode Rewards ± Std", save_path=f"{save_dir}/{env_id}/episode_rewards_avg.png")
plot(grouped_data, scale=args.scale, value_key='lengths', ylabel="Episode Length", title="Avg Episode Lengths ± Std", save_path=f"{save_dir}/{env_id}/episode_lengths_avg.png")
else:
print("No valid checkpoint data found.")
pass
def filter_checkpoints(checkpoint_paths, iters, arch, run):
filtered_iters = filter_checkpoint_by_iters(checkpoint_paths, iters)
filtered_arch = filter_checkpoint_by_arch(filtered_iters, arch)
filtered_run = filter_checkpoint_by_run(filtered_arch, run)
return filtered_run
def filter_checkpoint_by_iters(checkpoint_paths, iters):
return [path for path in checkpoint_paths if f"_{iters}" in path]
def filter_checkpoint_by_arch(checkpoint_paths, arch):
return [path for path in checkpoint_paths if f"{arch}" in path]
def filter_checkpoint_by_run(checkpoint_paths, run):
return [path for path in checkpoint_paths if f"run{run}" in path]
def get_training_data_from_checkpoint_path(checkpoint_path, device):
checkpoint = load_checkpoint(checkpoint_path, device)
global_step = checkpoint.get('global_step', 0)
training_iteration = checkpoint.get('training_iteration', 0)
episode_rewards_tracking = checkpoint.get('episode_rewards_tracking', [])
episode_lengths_tracking = checkpoint.get('episode_lengths_tracking', [])
global_steps_tracking = checkpoint.get('global_steps_tracking', [])
model_args = checkpoint.get('args', None)
return global_step, training_iteration, episode_rewards_tracking, episode_lengths_tracking, global_steps_tracking, model_args
def prepare_csv(csv_filepath):
if os.path.exists(csv_filepath):
os.remove(csv_filepath)
with open(csv_filepath, mode='a', newline='') as f:
writer = csv.writer(f)
writer.writerow(['arch', 'iters', 'run', 'mean', 'std'])
pass
def parse_env_id(env_id):
if env_id == "CartPole-v1":
return "cartpole"
elif env_id == "Acrobot-v1":
return "acrobot"
elif env_id == "MiniGrid-FourRooms-v0":
return "4rooms"
else:
raise ValueError(f"Environment {env_id} not supported.")
def get_size_action_space(env_id):
if env_id == "CartPole-v1":
return 2
elif env_id == "Acrobot-v1":
return 3
elif env_id == "MiniGrid-FourRooms-v0":
return 7
else:
raise ValueError(f"Environment {env_id} not supported.")
def prepare_env(env_id, max_environment_steps, mask_velocity, render_mode):
if env_id in ("CartPole-v1", "Acrobot-v1"):
return(make_env_classic_control(env_id, max_environment_steps, mask_velocity=mask_velocity, render_mode=render_mode)())
elif "MiniGrid" in env_id:
return(make_env_minigrid(env_id, max_environment_steps)())
else:
raise NotImplementedError(f"Environment {env_id} not supported.")
def create_episode_length_csv_and_activation_plots(save_dir, args):
for env_id in ("CartPole-v1", "Acrobot-v1", "MiniGrid-FourRooms-v0"):
size_action_space = get_size_action_space(env_id)
csv_filepath = f'{save_dir}/{env_id}/episode_lengths.csv'
if os.path.exists(csv_filepath):
os.remove(csv_filepath)
os.makedirs(os.path.dirname(csv_filepath), exist_ok=True)
prepare_csv(csv_filepath)
checkpoint_paths = get_checkpoint_paths_for_environment(env_id, args.log_dir)
ARCHS_TO_TEST = ["ctm", "lstm"]
ITERS_TO_TEST = [1, 2, 5]
RUNS_TO_TEST = [1, 2, 3]
for arch in ARCHS_TO_TEST:
for iters in ITERS_TO_TEST:
episode_lengths = []
for run in RUNS_TO_TEST:
activation_plots_path = f'{save_dir}/{env_id}/arch_{arch}_iters_{iters}_run_{run}'
os.makedirs(activation_plots_path, exist_ok=True)
checkpoints = filter_checkpoints(checkpoint_paths, iters, arch, run)
if not checkpoints:
print(f"Skipping: no checkpoint found for {env_id} | iters={iters} | arch={arch} | run={run}")
continue
_, _, _, _, _, model_args = get_training_data_from_checkpoint_path(checkpoints[0], device)
model_args.log_dir = f"{args.log_dir}/{env_id}"
agent = Agent(size_action_space, model_args, device).to(device)
optimizer = optim.Adam(agent.parameters(), lr=model_args.lr, eps=1e-5)
_, _, _, _, _, _ = load_model(agent, optimizer, checkpoints[0], device)
eval_env = prepare_env(model_args.env_id, model_args.max_environment_steps, mask_velocity=model_args.mask_velocity, render_mode="rgb_array")
for idx in range(args.num_eval_envs):
eval_next_obs, _ = eval_env.reset(seed=idx)
eval_next_done = False
eval_state = agent.get_initial_state(1)
tracking_data_by_world_step = []
for environment_step in range(model_args.max_environment_steps):
with torch.no_grad():
action, _, _, value, eval_state, tracking_data, action_logits, action_probs = agent.get_action_and_value(
torch.Tensor(eval_next_obs).to(device).unsqueeze(0),
eval_state,
torch.Tensor([eval_next_done]).to(device),
track=True
)
eval_next_obs, reward, termination, truncation, _ = eval_env.step(action.cpu().numpy()[0])
eval_next_done = termination or truncation
tracking_data['actions'] = np.tile(action.detach().cpu().numpy(), (model_args.iterations)) # Shape T
tracking_data['values'] = np.tile(value.squeeze(-1).detach().cpu().numpy(), (model_args.iterations)) # Shape T
tracking_data['action_logits'] = np.tile(action_logits.detach().cpu().numpy(), (model_args.iterations, 1)) # Shape T, A
tracking_data['action_probs'] = np.tile(action_probs.detach().cpu().numpy(), (model_args.iterations, 1))# Shape T, A
tracking_data['rewards'] = np.tile(np.array(reward), (model_args.iterations)) # Shape T
tracking_data['inputs'] = np.tile(np.array(eval_env.render()), (model_args.iterations, 1, 1, 1)) # Shape T, H, W, C
tracking_data_by_world_step.append(tracking_data)
if eval_next_done:
break
eval_env.close()
combined_tracking_data = combine_tracking_data(tracking_data_by_world_step)
n_to_plot = 80 if combined_tracking_data['post_activations'].shape[-1] < 100 else 100
if idx==0:
plot_neural_dynamics(combined_tracking_data['post_activations'], n_to_plot, activation_plots_path, axis_snap=True)
process = multiprocessing.Process(
target=make_rl_gif,
args=(
combined_tracking_data['action_logits'],
combined_tracking_data['action_probs'],
combined_tracking_data['actions'],
combined_tracking_data['values'],
combined_tracking_data['rewards'],
combined_tracking_data['pre_activations'],
combined_tracking_data['post_activations'],
combined_tracking_data['inputs'],
f"{activation_plots_path}/eval_output_val_{idx}.gif"
)
)
process.start()
episode_lengths.append(environment_step+1)
if episode_lengths:
mean = np.mean(episode_lengths)
std = np.std(episode_lengths)
with open(csv_filepath, mode='a', newline='') as f:
writer = csv.writer(f)
writer.writerow([arch, iters, run, mean, std])
if __name__ == '__main__':
args = parse_args()
set_seed(args.seed)
save_dir = "tasks/rl/analysis/outputs"
os.makedirs(save_dir, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
create_training_curves(save_dir, args.log_dir, device)
create_episode_length_csv_and_activation_plots(save_dir, args)
|