File size: 5,308 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import numpy as np
from models.ctm import ContinuousThoughtMachine

class ContinuousThoughtMachineSORT(ContinuousThoughtMachine):
    """
    Slight adaption of the CTM to work with the sort task.
    """                               

    def __init__(self,
                 iterations,
                 d_model,
                 d_input,
                 heads,
                 n_synch_out,
                 n_synch_action,
                 synapse_depth,
                 memory_length,
                 deep_nlms,
                 memory_hidden_dims,
                 do_layernorm_nlm,
                 backbone_type,
                 positional_embedding_type,
                 out_dims,
                 prediction_reshaper=[-1],
                 dropout=0,
                 dropout_nlm=None,
                 neuron_select_type='random-pairing',  
                 n_random_pairing_self=0,
                 ):
        super().__init__(
            iterations=iterations,
            d_model=d_model,
            d_input=d_input,
            heads=0,
            n_synch_out=n_synch_out,
            n_synch_action=0,
            synapse_depth=synapse_depth,
            memory_length=memory_length,
            deep_nlms=deep_nlms,
            memory_hidden_dims=memory_hidden_dims,
            do_layernorm_nlm=do_layernorm_nlm,
            backbone_type='none',
            positional_embedding_type='none',
            out_dims=out_dims,
            prediction_reshaper=prediction_reshaper,
            dropout=dropout,
            dropout_nlm=dropout_nlm,
            neuron_select_type=neuron_select_type,
            n_random_pairing_self=n_random_pairing_self,
        )

        # --- Use a minimal CTM w/out input (action) synch ---
        self.neuron_select_type_action = None
        self.synch_representation_size_action = None

        self.attention = None  # Should already be None because super(... heads=0... ) 
        self.q_proj = None  # Should already be None because super(... heads=0... ) 
        self.kv_proj = None  # Should already be None because super(... heads=0... ) 




    def forward(self, x, track=False):
        B = x.size(0)
        device = x.device

        # --- Tracking Initialization ---
        pre_activations_tracking = []
        post_activations_tracking = []
        synch_out_tracking = []
        attention_tracking = []

        # --- For SORT: no need to featurise data ---
        

        # --- Initialise Recurrent State ---
        state_trace = self.start_trace.unsqueeze(0).expand(B, -1, -1) # Shape: (B, H, T)
        activated_state = self.start_activated_state.unsqueeze(0).expand(B, -1) # Shape: (B, H)

        # --- Prepare Storage for Outputs per Iteration ---
        predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=x.dtype)
        certainties = torch.empty(B, 2, self.iterations, device=device, dtype=x.dtype)

        # --- Initialise Recurrent Synch Values  ---
        r_out = torch.exp(-torch.clamp(self.decay_params_out, 0, 15)).unsqueeze(0).repeat(B, 1)
        _, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, None, None, r_out, synch_type='out')
        # Compute learned weighting for synchronisation
        

        # --- Recurrent Loop  ---
        for stepi in range(self.iterations):

            pre_synapse_input = torch.concatenate((x, activated_state), dim=-1)

            # --- Apply Synapses ---
            state = self.synapses(pre_synapse_input)
            # The 'state_trace' is the history of incoming pre-activations
            state_trace = torch.cat((state_trace[:, :, 1:], state.unsqueeze(-1)), dim=-1)

            # --- Apply Neuron-Level Models ---
            activated_state = self.trace_processor(state_trace)
            # One would also keep an 'activated_state_trace' as the history of outgoing post-activations
            # BUT, this is unnecessary because the synchronisation calculation is fully linear and can be
            # done using only the currect activated state (see compute_synchronisation method for explanation)

            # --- Calculate Synchronisation for Output Predictions ---
            synchronisation_out, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, decay_alpha_out, decay_beta_out, r_out, synch_type='out')

            # --- Get Predictions and Certainties ---
            current_prediction = self.output_projector(synchronisation_out)
            current_certainty = self.compute_certainty(current_prediction)

            predictions[..., stepi] = current_prediction
            certainties[..., stepi] = current_certainty

            # --- Tracking ---
            if track:
                pre_activations_tracking.append(state_trace[:,:,-1].detach().cpu().numpy())
                post_activations_tracking.append(activated_state.detach().cpu().numpy())
                synch_out_tracking.append(synchronisation_out.detach().cpu().numpy())

        # --- Return Values ---
        if track:
            return predictions, certainties, np.array(synch_out_tracking), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
        return predictions, certainties, synchronisation_out