File size: 24,543 Bytes
68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import numpy as np
import cv2
import torch
import os
import imageio
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import patheffects
mpl.use('Agg')
import seaborn as sns
import numpy as np
from tqdm.auto import tqdm
sns.set_style('darkgrid')
from tqdm.auto import tqdm
from scipy import ndimage
import umap
from scipy.special import softmax
import subprocess as sp
import cv2 # Still potentially useful for color conversion checks if needed
import os
def save_frames_to_mp4(frames, output_filename, fps=15.0, gop_size=None, crf=23, preset='medium', pix_fmt='yuv420p'):
"""
Saves a list of NumPy array frames to an MP4 video file using FFmpeg via subprocess.
Includes fix for odd frame dimensions by padding to the nearest even number using -vf pad.
Requires FFmpeg to be installed and available in the system PATH.
Args:
frames (list): A list of NumPy arrays representing the video frames.
Expected format: uint8, (height, width, 3) for BGR color
or (height, width) for grayscale. Should be consistent.
output_filename (str): The path and name for the output MP4 file.
fps (float, optional): Frames per second for the output video. Defaults to 15.0.
gop_size (int, optional): Group of Pictures (GOP) size. This determines the
maximum interval between keyframes. Lower values
mean more frequent keyframes (better seeking, larger file).
Defaults to int(fps) (approx 1 keyframe per second).
crf (int, optional): Constant Rate Factor for H.264 encoding. Lower values mean
better quality and larger files. Typical range: 18-28.
Defaults to 23.
preset (str, optional): FFmpeg encoding speed preset. Affects encoding time
and compression efficiency. Options include 'ultrafast',
'superfast', 'veryfast', 'faster', 'fast', 'medium',
'slow', 'slower', 'veryslow'. Defaults to 'medium'.
"""
if not frames:
print("Error: The 'frames' list is empty. No video to save.")
return
# --- Determine Parameters from First Frame ---
try:
first_frame = frames[0]
print(first_frame.shape)
if not isinstance(first_frame, np.ndarray):
print(f"Error: Frame 0 is not a NumPy array (type: {type(first_frame)}).")
return
frame_height, frame_width = first_frame.shape[:2]
frame_size_str = f"{frame_width}x{frame_height}"
# Determine input pixel format based on first frame's shape
if len(first_frame.shape) == 3 and first_frame.shape[2] == 3:
input_pixel_format = 'bgr24' # Assume OpenCV's default BGR uint8
expected_dims = 3
print(f"Info: Detected color frames (shape: {first_frame.shape}). Expecting BGR input.")
elif len(first_frame.shape) == 2:
input_pixel_format = 'gray'
expected_dims = 2
print(f"Info: Detected grayscale frames (shape: {first_frame.shape}).")
else:
print(f"Error: Unsupported frame shape {first_frame.shape}. Must be (h, w) or (h, w, 3).")
return
if first_frame.dtype != np.uint8:
print(f"Warning: First frame dtype is {first_frame.dtype}. Will attempt conversion to uint8.")
except IndexError:
print("Error: Could not access the first frame to determine dimensions.")
return
except Exception as e:
print(f"Error processing first frame: {e}")
return
# --- Set GOP size default if not provided ---
if gop_size is None:
gop_size = int(fps)
print(f"Info: GOP size not specified, defaulting to {gop_size} (approx 1 keyframe/sec).")
# --- Construct FFmpeg Command ---
# ADDED -vf pad filter to ensure even dimensions for libx264/yuv420p
# It calculates the nearest even dimensions >= original dimensions
# Example: 1600x1351 -> 1600x1352
pad_filter = "pad=ceil(iw/2)*2:ceil(ih/2)*2"
command = [
'ffmpeg',
'-y',
'-f', 'rawvideo',
'-vcodec', 'rawvideo',
'-pix_fmt', input_pixel_format,
'-s', frame_size_str,
'-r', str(float(fps)),
'-i', '-',
'-vf', pad_filter, # <--- ADDED VIDEO FILTER HERE
'-c:v', 'libx264',
'-pix_fmt', pix_fmt,
'-preset', preset,
'-crf', str(crf),
'-g', str(gop_size),
'-movflags', '+faststart',
output_filename
]
print(f"\n--- Starting FFmpeg ---")
print(f"Output File: {output_filename}")
print(f"Parameters: FPS={fps}, Size={frame_size_str}, GOP={gop_size}, CRF={crf}, Preset={preset}")
print(f"Applying Filter: -vf {pad_filter} (Ensures even dimensions)")
# print(f"FFmpeg Command: {' '.join(command)}") # Uncomment for debugging
# --- Execute FFmpeg via Subprocess ---
try:
process = sp.Popen(command, stdin=sp.PIPE, stdout=sp.PIPE, stderr=sp.PIPE)
print(f"\nWriting {len(frames)} frames to FFmpeg...")
progress_interval = max(1, len(frames) // 10) # Print progress roughly 10 times
for i, frame in enumerate(frames):
# Basic validation and conversion for each frame
if not isinstance(frame, np.ndarray):
print(f"Warning: Frame {i} is not a numpy array (type: {type(frame)}). Skipping.")
continue
if frame.shape[0] != frame_height or frame.shape[1] != frame_width:
print(f"Warning: Frame {i} has different dimensions {frame.shape[:2]}! Expected ({frame_height},{frame_width}). Skipping.")
continue
current_dims = len(frame.shape)
if current_dims != expected_dims:
print(f"Warning: Frame {i} has inconsistent dimensions ({current_dims}D vs expected {expected_dims}D). Skipping.")
continue
if expected_dims == 3 and frame.shape[2] != 3:
print(f"Warning: Frame {i} is color but doesn't have 3 channels ({frame.shape}). Skipping.")
continue
if frame.dtype != np.uint8:
try:
frame = np.clip(frame, 0, 255).astype(np.uint8)
except Exception as clip_err:
print(f"Error clipping/converting frame {i} dtype: {clip_err}. Skipping.")
continue
# Write frame bytes to FFmpeg's stdin
try:
process.stdin.write(frame.tobytes())
except (OSError, BrokenPipeError) as pipe_err:
print(f"\nError writing frame {i} to FFmpeg stdin: {pipe_err}")
print("FFmpeg process likely terminated prematurely. Check FFmpeg errors below.")
try:
# Immediately try to read stderr if pipe breaks
stderr_output_on_error = process.stderr.read()
if stderr_output_on_error:
print("\n--- FFmpeg stderr output on error ---")
print(stderr_output_on_error.decode(errors='ignore'))
print("--- End FFmpeg stderr ---")
except Exception as read_err:
print(f"(Could not read stderr after pipe error: {read_err})")
return
except Exception as write_err:
print(f"Unexpected error writing frame {i}: {write_err}. Skipping.")
continue
if (i + 1) % progress_interval == 0 or (i + 1) == len(frames):
print(f" Processed frame {i + 1}/{len(frames)}")
print("\nFinished writing frames. Closing FFmpeg stdin and waiting for completion...")
process.stdin.close()
stdout, stderr = process.communicate()
return_code = process.wait()
print("\n--- FFmpeg Final Status ---")
if return_code == 0:
print(f"FFmpeg process completed successfully.")
print(f"Video saved as: {output_filename}")
else:
print(f"FFmpeg process failed with return code {return_code}.")
print("--- FFmpeg Standard Error Output: ---")
print(stderr.decode(errors='replace')) # Print stderr captured by communicate()
print("--- End FFmpeg Output ---")
print("Review the FFmpeg error message above for details (e.g., dimension errors, parameter issues).")
except FileNotFoundError:
print("\n--- FATAL ERROR ---")
print("Error: 'ffmpeg' command not found.")
print("Please ensure FFmpeg is installed and its directory is included in your system's PATH environment variable.")
print("Download from: https://ffmpeg.org/")
print("-------------------")
except Exception as e:
print(f"\nAn unexpected error occurred during FFmpeg execution: {e}")
def find_island_centers(array_2d, threshold):
"""
Finds the center of mass of each island (connected component) in a 2D array.
Args:
array_2d: A 2D numpy array of values.
threshold: The threshold to binarize the array.
Returns:
A list of tuples (y, x) representing the center of mass of each island.
"""
binary_image = array_2d > threshold
labeled_image, num_labels = ndimage.label(binary_image)
centers = []
areas = [] # Store the area of each island
for i in range(1, num_labels + 1):
island = (labeled_image == i)
total_mass = np.sum(array_2d[island])
if total_mass > 0:
y_coords, x_coords = np.mgrid[:array_2d.shape[0], :array_2d.shape[1]]
x_center = np.average(x_coords[island], weights=array_2d[island])
y_center = np.average(y_coords[island], weights=array_2d[island])
centers.append((round(y_center, 4), round(x_center, 4)))
areas.append(np.sum(island)) # Calculate area of the island
return centers, areas
def plot_neural_dynamics(post_activations_history, N_to_plot, save_location, axis_snap=False, N_per_row=5, which_neurons_mid=None, mid_colours=None, use_most_active_neurons=False):
assert N_to_plot%N_per_row==0, f'For nice visualisation, N_to_plot={N_to_plot} must be a multiple of N_per_row={N_per_row}'
assert post_activations_history.shape[-1] >= N_to_plot
figscale = 2
aspect_ratio = 3
mosaic = np.array([[f'{i}'] for i in range(N_to_plot)]).flatten().reshape(-1, N_per_row)
fig_synch, axes_synch = plt.subplot_mosaic(mosaic=mosaic, figsize=(figscale*mosaic.shape[1]*aspect_ratio*0.2, figscale*mosaic.shape[0]*0.2))
fig_mid, axes_mid = plt.subplot_mosaic(mosaic=mosaic, figsize=(figscale*mosaic.shape[1]*aspect_ratio*0.2, figscale*mosaic.shape[0]*0.2), dpi=200)
palette = sns.color_palette("husl", 8)
which_neurons_synch = np.arange(N_to_plot)
# which_neurons_mid = np.arange(N_to_plot, N_to_plot*2) if post_activations_history.shape[-1] >= 2*N_to_plot else np.random.choice(np.arange(post_activations_history.shape[-1]), size=N_to_plot, replace=True)
random_indices = np.random.choice(np.arange(post_activations_history.shape[-1]), size=N_to_plot, replace=post_activations_history.shape[-1] < N_to_plot)
if use_most_active_neurons:
metric = np.abs(np.fft.rfft(post_activations_history, axis=0))[3:].mean(0).std(0)
random_indices = np.argsort(metric)[-N_to_plot:]
np.random.shuffle(random_indices)
which_neurons_mid = which_neurons_mid if which_neurons_mid is not None else random_indices
if mid_colours is None:
mid_colours = [palette[np.random.randint(0, 8)] for ndx in range(N_to_plot)]
with tqdm(total=N_to_plot, initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
pbar_inner.set_description('Plotting neural dynamics')
for ndx in range(N_to_plot):
ax_s = axes_synch[f'{ndx}']
ax_m = axes_mid[f'{ndx}']
traces_s = post_activations_history[:,:,which_neurons_synch[ndx]].T
traces_m = post_activations_history[:,:,which_neurons_mid[ndx]].T
c_s = palette[np.random.randint(0, 8)]
c_m = mid_colours[ndx]
for traces_s_here, traces_m_here in zip(traces_s, traces_m):
ax_s.plot(np.arange(len(traces_s_here)), traces_s_here, linestyle='-', color=c_s, alpha=0.05, linewidth=0.6)
ax_m.plot(np.arange(len(traces_m_here)), traces_m_here, linestyle='-', color=c_m, alpha=0.05, linewidth=0.6)
ax_s.plot(np.arange(len(traces_s[0])), traces_s[0], linestyle='-', color='white', alpha=1, linewidth=2.5)
ax_s.plot(np.arange(len(traces_s[0])), traces_s[0], linestyle='-', color=c_s, alpha=1, linewidth=1.3)
ax_s.plot(np.arange(len(traces_s[0])), traces_s[0], linestyle='-', color='black', alpha=1, linewidth=0.3)
ax_m.plot(np.arange(len(traces_m[0])), traces_m[0], linestyle='-', color='white', alpha=1, linewidth=2.5)
ax_m.plot(np.arange(len(traces_m[0])), traces_m[0], linestyle='-', color=c_m, alpha=1, linewidth=1.3)
ax_m.plot(np.arange(len(traces_m[0])), traces_m[0], linestyle='-', color='black', alpha=1, linewidth=0.3)
if axis_snap and np.all(np.isfinite(traces_s[0])):
ax_s.set_ylim([np.min(traces_s[0])-np.ptp(traces_s[0])*0.05, np.max(traces_s[0])+np.ptp(traces_s[0])*0.05])
ax_m.set_ylim([np.min(traces_m[0])-np.ptp(traces_m[0])*0.05, np.max(traces_m[0])+np.ptp(traces_m[0])*0.05])
ax_s.grid(False)
ax_m.grid(False)
ax_s.set_xlim([0, len(traces_s[0])-1])
ax_m.set_xlim([0, len(traces_m[0])-1])
ax_s.set_xticklabels([])
ax_s.set_yticklabels([])
ax_m.set_xticklabels([])
ax_m.set_yticklabels([])
pbar_inner.update(1)
fig_synch.tight_layout(pad=0.05)
fig_mid.tight_layout(pad=0.05)
if save_location is not None:
fig_synch.savefig(f'{save_location}/neural_dynamics_synch.pdf', dpi=200)
fig_synch.savefig(f'{save_location}/neural_dynamics_synch.png', dpi=200)
fig_mid.savefig(f'{save_location}/neural_dynamics_other.pdf', dpi=200)
fig_mid.savefig(f'{save_location}/neural_dynamics_other.png', dpi=200)
plt.close(fig_synch)
plt.close(fig_mid)
return fig_synch, fig_mid, which_neurons_mid, mid_colours
def make_classification_gif(image, target, predictions, certainties, post_activations, attention_tracking, class_labels, save_location):
cmap_viridis = sns.color_palette('viridis', as_cmap=True)
cmap_spectral = sns.color_palette("Spectral", as_cmap=True)
figscale = 2
with tqdm(total=post_activations.shape[0]+1, initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
pbar_inner.set_description('Computing UMAP')
low = np.percentile(post_activations, 1, axis=0, keepdims=True)
high = np.percentile(post_activations, 99, axis=0, keepdims=True)
post_activations_normed = np.clip((post_activations - low)/(high - low), 0, 1)
metric = 'cosine'
reducer = umap.UMAP(n_components=2,
n_neighbors=100,
min_dist=3,
spread=3.0,
metric=metric,
random_state=None,
# low_memory=True,
) if post_activations.shape[-1] > 2048 else umap.UMAP(n_components=2,
n_neighbors=20,
min_dist=1,
spread=1.0,
metric=metric,
random_state=None,
# low_memory=True,
)
positions = reducer.fit_transform(post_activations_normed.T)
x_umap = positions[:, 0]
y_umap = positions[:, 1]
pbar_inner.update(1)
pbar_inner.set_description('Iterating through to build frames')
frames = []
route_steps = {}
route_colours = []
n_steps = len(post_activations)
n_heads = attention_tracking.shape[1]
step_linspace = np.linspace(0, 1, n_steps)
for stepi in np.arange(0, n_steps, 1):
pbar_inner.set_description('Making frames for gif')
attention_now = attention_tracking[max(0, stepi-5):stepi+1].mean(0) # Make it smooth for pretty
# attention_now[:,0,0] = 0 # Corners can be weird looking
# attention_now[:,0,-1] = 0
# attention_now[:,-1,0] = 0
# attention_now[:,-1,-1] = 0
# attention_now = (attention_tracking[:stepi+1, 0] * decay).sum(0)/(decay.sum(0))
certainties_now = certainties[1, :stepi+1]
attention_interp = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), image.shape[:2], mode='bilinear')[0]
attention_interp = (attention_interp.flatten(1) - attention_interp.flatten(1).min(-1, keepdim=True)[0])/(attention_interp.flatten(1).max(-1, keepdim=True)[0] - attention_interp.flatten(1).min(-1, keepdim=True)[0])
attention_interp = attention_interp.reshape(n_heads, image.shape[0], image.shape[1])
colour = list(cmap_spectral(step_linspace[stepi]))
route_colours.append(colour)
for headi in range(min(8, n_heads)):
com_attn = np.copy(attention_interp[headi])
com_attn[com_attn < np.percentile(com_attn, 97)] = 0.0
if headi not in route_steps:
A = attention_interp[headi].detach().cpu().numpy()
centres, areas = find_island_centers(A, threshold=0.7)
route_steps[headi] = [centres[np.argmax(areas)]]
else:
A = attention_interp[headi].detach().cpu().numpy()
centres, areas = find_island_centers(A, threshold=0.7)
route_steps[headi] = route_steps[headi] + [centres[np.argmax(areas)]]
mosaic = [['head_0', 'head_0_overlay', 'head_1', 'head_1_overlay'],
['head_2', 'head_2_overlay', 'head_3', 'head_3_overlay'],
['head_4', 'head_4_overlay', 'head_5', 'head_5_overlay'],
['head_6', 'head_6_overlay', 'head_7', 'head_7_overlay'],
['probabilities', 'probabilities','certainty', 'certainty'],
['umap', 'umap', 'umap', 'umap'],
['umap', 'umap', 'umap', 'umap'],
['umap', 'umap', 'umap', 'umap'],
]
img_aspect = image.shape[0]/image.shape[1]
# print(img_aspect)
aspect_ratio = (4*figscale, 8*figscale*img_aspect)
fig, axes = plt.subplot_mosaic(mosaic, figsize=aspect_ratio)
for ax in axes.values():
ax.axis('off')
axes['certainty'].plot(np.arange(len(certainties_now)), certainties_now, 'k-', linewidth=figscale*1, label='1-(normalised entropy)')
for ii, (x, y) in enumerate(zip(np.arange(len(certainties_now)), certainties_now)):
is_correct = predictions[:, ii].argmax(-1)==target
if is_correct: axes['certainty'].axvspan(ii, ii + 1, facecolor='limegreen', edgecolor=None, lw=0, alpha=0.3)
else:
axes['certainty'].axvspan(ii, ii + 1, facecolor='orchid', edgecolor=None, lw=0, alpha=0.3)
axes['certainty'].plot(len(certainties_now)-1, certainties_now[-1], 'k.', markersize=figscale*4)
axes['certainty'].axis('off')
axes['certainty'].set_ylim([-0.05, 1.05])
axes['certainty'].set_xlim([0, certainties.shape[-1]+1])
ps = torch.softmax(torch.from_numpy(predictions[:, stepi]), -1)
k = 15 if len(class_labels) > 15 else len(class_labels)
topk = torch.topk (ps, k, dim = 0, largest=True).indices.detach().cpu().numpy()
top_classes = np.array(class_labels)[topk]
true_class = target
colours = [('b' if ci != true_class else 'g') for ci in topk]
bar_heights = ps[topk].detach().cpu().numpy()
axes['probabilities'].bar(np.arange(len(bar_heights))[::-1], bar_heights, color=np.array(colours), alpha=1)
axes['probabilities'].set_ylim([0, 1])
axes['probabilities'].axis('off')
for i, (name) in enumerate(top_classes):
prob = ps[i]
is_correct = name==class_labels[true_class]
fg_color = 'darkgreen' if is_correct else 'crimson'
text_str = f'{name[:40]}'
axes['probabilities'].text(
0.05,
0.95 - i * 0.055, # Adjust vertical position for each line
text_str,
transform=axes['probabilities'].transAxes,
verticalalignment='top',
fontsize=8, # Increased font size
color=fg_color,
alpha=0.5,
path_effects=[
patheffects.Stroke(linewidth=3, foreground='aliceblue'),
patheffects.Normal()
])
attention_now = attention_tracking[max(0, stepi-5):stepi+1].mean(0) # Make it smooth for pretty
# attention_now = (attention_tracking[:stepi+1, 0] * decay).sum(0)/(decay.sum(0))
certainties_now = certainties[1, :stepi+1]
attention_interp = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), image.shape[:2], mode='nearest')[0]
attention_interp = (attention_interp.flatten(1) - attention_interp.flatten(1).min(-1, keepdim=True)[0])/(attention_interp.flatten(1).max(-1, keepdim=True)[0] - attention_interp.flatten(1).min(-1, keepdim=True)[0])
attention_interp = attention_interp.reshape(n_heads, image.shape[0], image.shape[1])
for hi in range(min(8, n_heads)):
ax = axes[f'head_{hi}']
img_to_plot = cmap_viridis(attention_interp[hi].detach().cpu().numpy())
ax.imshow(img_to_plot)
ax_overlay = axes[f'head_{hi}_overlay']
these_route_steps = route_steps[hi]
y_coords, x_coords = zip(*these_route_steps)
y_coords = image.shape[-2] - np.array(list(y_coords))-1
ax_overlay.imshow(np.flip(image, axis=0), origin='lower')
# ax.imshow(np.flip(solution_maze, axis=0), origin='lower')
arrow_scale = 1.5 if image.shape[0] > 32 else 0.8
for i in range(len(these_route_steps)-1):
dx = x_coords[i+1] - x_coords[i]
dy = y_coords[i+1] - y_coords[i]
ax_overlay.arrow(x_coords[i], y_coords[i], dx, dy, linewidth=1.6*arrow_scale*1.3, head_width=1.9*arrow_scale*1.3, head_length=1.4*arrow_scale*1.45, fc='white', ec='white', length_includes_head = True, alpha=1)
ax_overlay.arrow(x_coords[i], y_coords[i], dx, dy, linewidth=1.6*arrow_scale, head_width=1.9*arrow_scale, head_length=1.4*arrow_scale, fc=route_colours[i], ec=route_colours[i], length_includes_head = True)
ax_overlay.set_xlim([0,image.shape[1]-1])
ax_overlay.set_ylim([0,image.shape[0]-1])
ax_overlay.axis('off')
z = post_activations_normed[stepi]
axes['umap'].scatter(x_umap, y_umap, s=30, c=cmap_spectral(z))
fig.tight_layout(pad=0.1)
canvas = fig.canvas
canvas.draw()
image_numpy = np.frombuffer(canvas.buffer_rgba(), dtype='uint8')
image_numpy = (image_numpy.reshape(*reversed(canvas.get_width_height()), 4)[:,:,:3])
frames.append(image_numpy)
plt.close(fig)
pbar_inner.update(1)
pbar_inner.set_description('Saving gif')
imageio.mimsave(save_location, frames, fps=15, loop=100) |