File size: 38,110 Bytes
68b32f4 e8dc0c3 68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import argparse
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
import torch.nn as nn
from tqdm.auto import tqdm
from data.custom_datasets import ImageNet
from torchvision import datasets
from torchvision import transforms
from tasks.image_classification.imagenet_classes import IMAGENET2012_CLASSES
from models.ctm import ContinuousThoughtMachine
from models.lstm import LSTMBaseline
from models.ff import FFBaseline
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import image_classification_loss # Used by CTM, LSTM
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
from autoclip.torch import QuantileClip
import gc
import torchvision
torchvision.disable_beta_transforms_warning()
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Selection
parser.add_argument('--model', type=str, default='ctm', choices=['ctm', 'lstm', 'ff'], help='Model type to train.')
# Model Architecture
# Common
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--backbone_type', type=str, default='resnet18-4', help='Type of backbone featureiser.')
# CTM / LSTM specific
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
parser.add_argument('--heads', type=int, default=4, help='Number of attention heads (CTM, LSTM).')
parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
parser.add_argument('--positional_embedding_type', type=str, default='none', help='Type of positional embedding (CTM, LSTM).',
choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# CTM specific
parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).')
parser.add_argument('--n_synch_out', type=int, default=512, help='Number of neurons to use for output synch (CTM only).')
parser.add_argument('--n_synch_action', type=int, default=512, help='Number of neurons to use for observation/action synch (CTM only).')
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True, help='Use deep memory (CTM only).')
parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory (CTM only).')
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
# LSTM specific
parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).')
# Training
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components (backbone, synapses if CTM).')
parser.add_argument('--num_workers_train', type=int, default=1, help='Num workers training.')
# Housekeeping
parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
parser.add_argument('--dataset', type=str, default='cifar10', help='Dataset to use.')
parser.add_argument('--data_root', type=str, default='data/', help='Where to save dataset.')
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval')
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
args = parser.parse_args()
return args
def get_dataset(dataset, root):
if dataset=='imagenet':
dataset_mean = [0.485, 0.456, 0.406]
dataset_std = [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
class_labels = list(IMAGENET2012_CLASSES.values())
train_data = ImageNet(which_split='train', transform=train_transform)
test_data = ImageNet(which_split='validation', transform=test_transform)
elif dataset=='cifar10':
dataset_mean = [0.49139968, 0.48215827, 0.44653124]
dataset_std = [0.24703233, 0.24348505, 0.26158768]
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
train_transform = transforms.Compose(
[transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose(
[transforms.ToTensor(),
normalize,
])
train_data = datasets.CIFAR10(root, train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR10(root, train=False, transform=test_transform, download=True)
class_labels = ['air', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
elif dataset=='cifar100':
dataset_mean = [0.5070751592371341, 0.48654887331495067, 0.4409178433670344]
dataset_std = [0.2673342858792403, 0.2564384629170882, 0.27615047132568393]
normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
train_transform = transforms.Compose(
[transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose(
[transforms.ToTensor(),
normalize,
])
train_data = datasets.CIFAR100(root, train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR100(root, train=False, transform=test_transform, download=True)
idx_order = np.argsort(np.array(list(train_data.class_to_idx.values())))
class_labels = list(np.array(list(train_data.class_to_idx.keys()))[idx_order])
else:
raise NotImplementedError
return train_data, test_data, class_labels, dataset_mean, dataset_std
if __name__=='__main__':
# Hosuekeeping
args = parse_args()
set_seed(args.seed, False)
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
assert args.dataset in ['cifar10', 'cifar100', 'imagenet']
# Data
train_data, test_data, class_labels, dataset_mean, dataset_std = get_dataset(args.dataset, args.data_root)
num_workers_test = 1 # Defaulting to 1, change if needed
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers_train)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test, drop_last=False)
prediction_reshaper = [-1] # Problem specific
args.out_dims = len(class_labels)
# For total reproducibility
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
# Configure device string (support MPS on macOS)
if args.device[0] != -1:
device = f'cuda:{args.device[0]}'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
print(f'Running model {args.model} on {device}')
# Build model conditionally
model = None
if args.model == 'ctm':
model = ContinuousThoughtMachine(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
elif args.model == 'lstm':
model = LSTMBaseline(
num_layers=args.num_layers,
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
).to(device)
elif args.model == 'ff':
model = FFBaseline(
d_model=args.d_model,
backbone_type=args.backbone_type,
out_dims=args.out_dims,
dropout=args.dropout,
).to(device)
else:
raise ValueError(f"Unknown model type: {args.model}")
# For lazy modules so that we can get param count
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
model(pseudo_inputs)
model.train()
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking
start_iter = 0
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []
iters = []
# Conditional metrics for CTM/LSTM
train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
# Reloading logic
if args.reload:
checkpoint_path = f'{args.log_dir}/checkpoint.pt'
if os.path.isfile(checkpoint_path):
print(f'Reloading from: {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
if not args.reload_model_only:
print('Reloading optimizer etc.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_iter = checkpoint['iteration']
# Load common metrics
train_losses = checkpoint['train_losses']
test_losses = checkpoint['test_losses']
train_accuracies = checkpoint['train_accuracies']
test_accuracies = checkpoint['test_accuracies']
iters = checkpoint['iters']
# Load conditional metrics if they exist in checkpoint and are expected for current model
if args.model in ['ctm', 'lstm']:
train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']
else:
print('Only reloading model!')
if 'torch_rng_state' in checkpoint:
# Reset seeds
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Conditional Compilation
if args.do_compile:
print('Compiling...')
if hasattr(model, 'backbone'):
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
# Compile synapses only for CTM
if args.model == 'ctm':
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
# Training
iterator = iter(trainloader)
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
for bi in range(start_iter, args.training_iterations):
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device)
targets = targets.to(device)
loss = None
accuracy = None
# Model-specific forward and loss calculation
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile: # CUDAGraph marking for clean compile
torch.compiler.cudagraph_mark_step_begin()
if args.model == 'ctm':
predictions, certainties, synchronisation = model(inputs)
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
elif args.model == 'lstm':
predictions, certainties, synchronisation = model(inputs)
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
# LSTM where_most_certain will just be -1 because use_most_certain is False owing to stability issues with LSTM training
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
pbar_desc = f'LSTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
elif args.model == 'ff':
predictions = model(inputs)
loss = nn.CrossEntropyLoss()(predictions, targets)
accuracy = (predictions.argmax(1) == targets).float().mean().item()
pbar_desc = f'FF Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
# Metrics tracking and plotting (conditional logic needed)
if (bi % args.track_every == 0 or bi == args.warmup_steps) and (bi != 0 or args.reload_model_only):
iters.append(bi)
current_train_losses = []
current_test_losses = []
current_train_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
current_test_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
current_train_accuracies_most_certain = [] # Only for CTM/LSTM
current_test_accuracies_most_certain = [] # Only for CTM/LSTM
# Reset BN stats using train mode
pbar.set_description('Resetting BN')
model.train()
for module in model.modules():
if isinstance(module, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
module.reset_running_stats()
pbar.set_description('Tracking: Computing TRAIN metrics')
with torch.no_grad(): # Should use inference_mode? CTM/LSTM scripts used no_grad
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
all_targets_list = []
all_predictions_list = [] # List to store raw predictions (B, C, T) or (B, C)
all_predictions_most_certain_list = [] # Only for CTM/LSTM
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy())
# Model-specific forward and loss for evaluation
if args.model == 'ctm':
these_predictions, certainties, _ = model(inputs)
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)
elif args.model == 'lstm':
these_predictions, certainties, _ = model(inputs)
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)
elif args.model == 'ff':
these_predictions = model(inputs)
loss = nn.CrossEntropyLoss()(these_predictions, targets)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B,)
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1 : break # Check condition >= N-1
pbar_inner.set_description(f'Computing metrics for train (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list)
all_predictions = np.concatenate(all_predictions_list) # Shape (N, T) or (N,)
train_losses.append(np.mean(all_losses))
if args.model in ['ctm', 'lstm']:
# Accuracies per tick for CTM/LSTM
current_train_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0) # Mean over batch dim -> Shape (T,)
train_accuracies.append(current_train_accuracies)
# Most certain accuracy
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
current_train_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
train_accuracies_most_certain.append(current_train_accuracies_most_certain)
else: # FF
current_train_accuracies = (all_targets == all_predictions).mean() # Shape scalar
train_accuracies.append(current_train_accuracies)
del these_predictions
# Switch to eval mode for test metrics (fixed BN stats)
model.eval()
pbar.set_description('Tracking: Computing TEST metrics')
with torch.inference_mode(): # Use inference_mode for test eval
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
all_targets_list = []
all_predictions_list = []
all_predictions_most_certain_list = [] # Only for CTM/LSTM
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy())
# Model-specific forward and loss for evaluation
if args.model == 'ctm':
these_predictions, certainties, _ = model(inputs)
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())
elif args.model == 'lstm':
these_predictions, certainties, _ = model(inputs)
loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())
elif args.model == 'ff':
these_predictions = model(inputs)
loss = nn.CrossEntropyLoss()(these_predictions, targets)
all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
pbar_inner.set_description(f'Computing metrics for test (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list)
all_predictions = np.concatenate(all_predictions_list)
test_losses.append(np.mean(all_losses))
if args.model in ['ctm', 'lstm']:
current_test_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0)
test_accuracies.append(current_test_accuracies)
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
current_test_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
test_accuracies_most_certain.append(current_test_accuracies_most_certain)
else: # FF
current_test_accuracies = (all_targets == all_predictions).mean()
test_accuracies.append(current_test_accuracies)
# Plotting (conditional)
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
cm = sns.color_palette("viridis", as_cmap=True)
if args.model in ['ctm', 'lstm']:
# Plot per-tick accuracy for CTM/LSTM
train_acc_arr = np.array(train_accuracies) # Shape (N_iters, T)
test_acc_arr = np.array(test_accuracies) # Shape (N_iters, T)
num_ticks = train_acc_arr.shape[1]
for ti in range(num_ticks):
axacc_train.plot(iters, train_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
axacc_test.plot(iters, test_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
# Plot most certain accuracy
axacc_train.plot(iters, train_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
axacc_test.plot(iters, test_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
else: # FF
axacc_train.plot(iters, train_accuracies, 'k-', alpha=0.7, label='Accuracy') # Simple line
axacc_test.plot(iters, test_accuracies, 'k-', alpha=0.7, label='Accuracy')
axacc_train.set_title('Train Accuracy')
axacc_test.set_title('Test Accuracy')
axacc_train.legend(loc='lower right')
axacc_test.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
if args.dataset=='cifar10':
axacc_train.set_ylim([0.75, 1])
axacc_test.set_ylim([0.75, 1])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]:.4f}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]:.4f}')
axloss.legend(loc='upper right')
axloss.set_xlim([0, args.training_iterations])
axloss.set_ylim(bottom=0)
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
# Conditional Visualization (Only for CTM/LSTM)
if args.model in ['ctm', 'lstm']:
try: # For safety
inputs_viz, targets_viz = next(iter(testloader)) # Get a fresh batch
inputs_viz = inputs_viz.to(device)
targets_viz = targets_viz.to(device)
pbar.set_description('Tracking: Processing test data for viz')
predictions_viz, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
attention_tracking_viz = attention_tracking_viz.reshape(
attention_tracking_viz.shape[0],
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
pbar.set_description('Tracking: Neural dynamics plot')
plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)
imgi = 0 # Visualize the first image in the batch
img_to_gif = np.moveaxis(np.clip(inputs_viz[imgi].detach().cpu().numpy()*np.array(dataset_std).reshape(len(dataset_std), 1, 1) + np.array(dataset_mean).reshape(len(dataset_mean), 1, 1), 0, 1), 0, -1)
pbar.set_description('Tracking: Producing attention gif')
make_classification_gif(img_to_gif,
targets_viz[imgi].item(),
predictions_viz[imgi].detach().cpu().numpy(),
certainties_viz[imgi].detach().cpu().numpy(),
post_activations_viz[:,imgi],
attention_tracking_viz[:,imgi],
class_labels,
f'{args.log_dir}/{imgi}_attention.gif',
)
del predictions_viz, certainties_viz, pre_activations_viz, post_activations_viz, attention_tracking_viz
except Exception as e:
print(f"Visualization failed for model {args.model}: {e}")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
model.train() # Switch back to train mode
# Save model checkpoint (conditional metrics)
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
pbar.set_description('Saving model checkpoint...')
checkpoint_data = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'iteration': bi,
# Always save these
'train_losses': train_losses,
'test_losses': test_losses,
'train_accuracies': train_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
'test_accuracies': test_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
'iters': iters,
'args': args, # Save args used for this run
# RNG states
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
}
# Conditionally add metrics specific to CTM/LSTM
if args.model in ['ctm', 'lstm']:
checkpoint_data['train_accuracies_most_certain'] = train_accuracies_most_certain
checkpoint_data['test_accuracies_most_certain'] = test_accuracies_most_certain
torch.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
pbar.update(1)
|