File size: 38,110 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dc0c3
 
 
 
 
 
 
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import argparse
import os
import random

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
    # For faster
    torch.set_float32_matmul_precision('high')
import torch.nn as nn
from tqdm.auto import tqdm

from data.custom_datasets import ImageNet
from torchvision import datasets
from torchvision import transforms
from tasks.image_classification.imagenet_classes import IMAGENET2012_CLASSES
from models.ctm import ContinuousThoughtMachine
from models.lstm import LSTMBaseline
from models.ff import FFBaseline
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import image_classification_loss # Used by CTM, LSTM
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup

from autoclip.torch import QuantileClip

import gc
import torchvision
torchvision.disable_beta_transforms_warning()


import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
warnings.filterwarnings(
    "ignore",
    "Corrupt EXIF data",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
    "ignore",
    "UserWarning: Metadata Warning",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
    "ignore",
    "UserWarning: Truncated File Read",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)


def parse_args():
    parser = argparse.ArgumentParser()

    # Model Selection
    parser.add_argument('--model', type=str, default='ctm', choices=['ctm', 'lstm', 'ff'], help='Model type to train.')

    # Model Architecture
    # Common
    parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
    parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
    parser.add_argument('--backbone_type', type=str, default='resnet18-4', help='Type of backbone featureiser.')
    # CTM / LSTM specific
    parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
    parser.add_argument('--heads', type=int, default=4, help='Number of attention heads (CTM, LSTM).')
    parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
    parser.add_argument('--positional_embedding_type', type=str, default='none', help='Type of positional embedding (CTM, LSTM).',
                        choices=['none',
                                 'learnable-fourier',
                                 'multi-learnable-fourier',
                                 'custom-rotational'])
    # CTM specific
    parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).')
    parser.add_argument('--n_synch_out', type=int, default=512, help='Number of neurons to use for output synch (CTM only).')
    parser.add_argument('--n_synch_action', type=int, default=512, help='Number of neurons to use for observation/action synch (CTM only).')
    parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
    parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
    parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
    parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True, help='Use deep memory (CTM only).')
    parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory (CTM only).')
    parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
    parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
    # LSTM specific
    parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).')

    # Training
    parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
    parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
    parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
    parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
    parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
    parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
    parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
    parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
    parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
    parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
    parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
    parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
    parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components (backbone, synapses if CTM).')
    parser.add_argument('--num_workers_train', type=int, default=1, help='Num workers training.')

    # Housekeeping
    parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
    parser.add_argument('--dataset', type=str, default='cifar10', help='Dataset to use.')
    parser.add_argument('--data_root', type=str, default='data/', help='Where to save dataset.')
    parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
    parser.add_argument('--seed', type=int, default=412, help='Random seed.')
    parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
    parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
    parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
    parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
    parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval')
    parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
    parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')


    args = parser.parse_args()
    return args


def get_dataset(dataset, root):
    if dataset=='imagenet':
        dataset_mean = [0.485, 0.456, 0.406]
        dataset_std = [0.229, 0.224, 0.225]

        normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
        train_transform = transforms.Compose([
            transforms.RandomResizedCrop(224),
                    transforms.RandomHorizontalFlip(),
                    transforms.ToTensor(),
                    normalize])
        test_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
                    transforms.ToTensor(),
                    normalize])

        class_labels = list(IMAGENET2012_CLASSES.values())

        train_data = ImageNet(which_split='train', transform=train_transform)
        test_data = ImageNet(which_split='validation', transform=test_transform)
    elif dataset=='cifar10':
        dataset_mean = [0.49139968, 0.48215827, 0.44653124]
        dataset_std = [0.24703233, 0.24348505, 0.26158768]
        normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)
        train_transform = transforms.Compose(
            [transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
            transforms.ToTensor(),
            normalize,
            ])

        test_transform = transforms.Compose(
            [transforms.ToTensor(),
            normalize,
            ])
        train_data = datasets.CIFAR10(root, train=True, transform=train_transform, download=True)
        test_data = datasets.CIFAR10(root, train=False, transform=test_transform, download=True)
        class_labels = ['air', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    elif dataset=='cifar100':
        dataset_mean = [0.5070751592371341, 0.48654887331495067, 0.4409178433670344]
        dataset_std = [0.2673342858792403, 0.2564384629170882, 0.27615047132568393]
        normalize = transforms.Normalize(mean=dataset_mean, std=dataset_std)

        train_transform = transforms.Compose(
            [transforms.AutoAugment(transforms.AutoAugmentPolicy.CIFAR10),
            transforms.ToTensor(),
            normalize,
            ])
        test_transform = transforms.Compose(
            [transforms.ToTensor(),
            normalize,
            ])
        train_data = datasets.CIFAR100(root, train=True, transform=train_transform, download=True)
        test_data = datasets.CIFAR100(root, train=False, transform=test_transform, download=True)
        idx_order = np.argsort(np.array(list(train_data.class_to_idx.values())))
        class_labels = list(np.array(list(train_data.class_to_idx.keys()))[idx_order])
    else:
        raise NotImplementedError

    return train_data, test_data, class_labels, dataset_mean, dataset_std



if __name__=='__main__':

    # Hosuekeeping
    args = parse_args()

    set_seed(args.seed, False)
    if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)

    assert args.dataset in ['cifar10', 'cifar100', 'imagenet']

    # Data
    train_data, test_data, class_labels, dataset_mean, dataset_std = get_dataset(args.dataset, args.data_root)
    
    num_workers_test = 1 # Defaulting to 1, change if needed
    trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers_train)
    testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test, drop_last=False)
    
    prediction_reshaper = [-1]  # Problem specific
    args.out_dims = len(class_labels)

    # For total reproducibility
    zip_python_code(f'{args.log_dir}/repo_state.zip')
    with open(f'{args.log_dir}/args.txt', 'w') as f:
        print(args, file=f)

    # Configure device string (support MPS on macOS)
    if args.device[0] != -1:
        device = f'cuda:{args.device[0]}'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        device = 'cpu'
    print(f'Running model {args.model} on {device}')

    # Build model conditionally
    model = None
    if args.model == 'ctm':
        model = ContinuousThoughtMachine(
            iterations=args.iterations,
            d_model=args.d_model,
            d_input=args.d_input,
            heads=args.heads,
            n_synch_out=args.n_synch_out,
            n_synch_action=args.n_synch_action,
            synapse_depth=args.synapse_depth,
            memory_length=args.memory_length,
            deep_nlms=args.deep_memory,
            memory_hidden_dims=args.memory_hidden_dims,
            do_layernorm_nlm=args.do_normalisation,
            backbone_type=args.backbone_type,
            positional_embedding_type=args.positional_embedding_type,
            out_dims=args.out_dims,
            prediction_reshaper=prediction_reshaper,
            dropout=args.dropout,
            dropout_nlm=args.dropout_nlm,
            neuron_select_type=args.neuron_select_type,
            n_random_pairing_self=args.n_random_pairing_self,
        ).to(device)
    elif args.model == 'lstm':
         model = LSTMBaseline(
            num_layers=args.num_layers,
            iterations=args.iterations,
            d_model=args.d_model,
            d_input=args.d_input,
            heads=args.heads,
            backbone_type=args.backbone_type,
            positional_embedding_type=args.positional_embedding_type,
            out_dims=args.out_dims,
            prediction_reshaper=prediction_reshaper,
            dropout=args.dropout,
        ).to(device)
    elif args.model == 'ff':
        model = FFBaseline(
            d_model=args.d_model,
            backbone_type=args.backbone_type,
            out_dims=args.out_dims,
            dropout=args.dropout,
        ).to(device)
    else:
        raise ValueError(f"Unknown model type: {args.model}")


    # For lazy modules so that we can get param count
    pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
    model(pseudo_inputs) 

    model.train()

    
    print(f'Total params: {sum(p.numel() for p in model.parameters())}')
    decay_params = []
    no_decay_params = []
    no_decay_names = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue # Skip parameters that don't require gradients
        if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
            no_decay_params.append(param)
            no_decay_names.append(name)
        else:
            decay_params.append(param)
    if len(no_decay_names):
        print(f'WARNING, excluding: {no_decay_names}')

    # Optimizer and scheduler (Common setup)
    if len(no_decay_names) and args.weight_decay!=0:
        optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
                                       {'params': no_decay_params, 'weight_decay':0}],
                                  lr=args.lr,
                                  eps=1e-8 if not args.use_amp else 1e-6)
    else:
        optimizer = torch.optim.AdamW(model.parameters(),
                                    lr=args.lr,
                                    eps=1e-8 if not args.use_amp else 1e-6,
                                    weight_decay=args.weight_decay)
    

    warmup_schedule = warmup(args.warmup_steps)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
    if args.use_scheduler:
        if args.scheduler_type == 'multistep':
            scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
        elif args.scheduler_type == 'cosine':
            scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
        else:
            raise NotImplementedError


    # Metrics tracking
    start_iter = 0
    train_losses = []
    test_losses = []
    train_accuracies = []
    test_accuracies = []
    iters = []
    # Conditional metrics for CTM/LSTM
    train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
    test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None

    scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)

    # Reloading logic
    if args.reload:
        checkpoint_path = f'{args.log_dir}/checkpoint.pt'
        if os.path.isfile(checkpoint_path):
            print(f'Reloading from: {checkpoint_path}')
            checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
            if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
            load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
            print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")

            if not args.reload_model_only:
                print('Reloading optimizer etc.')
                optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
                scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
                scaler.load_state_dict(checkpoint['scaler_state_dict'])
                start_iter = checkpoint['iteration']
                # Load common metrics
                train_losses = checkpoint['train_losses']
                test_losses = checkpoint['test_losses']
                train_accuracies = checkpoint['train_accuracies'] 
                test_accuracies = checkpoint['test_accuracies'] 
                iters = checkpoint['iters']

                # Load conditional metrics if they exist in checkpoint and are expected for current model
                if args.model in ['ctm', 'lstm']:
                    train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
                    test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']

            else:
                print('Only reloading model!')

            if 'torch_rng_state' in checkpoint:
                # Reset seeds
                torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
                np.random.set_state(checkpoint['numpy_rng_state'])
                random.setstate(checkpoint['random_rng_state'])

            del checkpoint
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Conditional Compilation
    if args.do_compile:
        print('Compiling...')
        if hasattr(model, 'backbone'):
            model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)

        # Compile synapses only for CTM
        if args.model == 'ctm':
            model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)

    # Training
    iterator = iter(trainloader)


    with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
        for bi in range(start_iter, args.training_iterations):
            current_lr = optimizer.param_groups[-1]['lr']

            try:
                inputs, targets = next(iterator)
            except StopIteration:
                iterator = iter(trainloader)
                inputs, targets = next(iterator)

            inputs = inputs.to(device)
            targets = targets.to(device)

            loss = None
            accuracy = None
            # Model-specific forward and loss calculation
            with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
                if args.do_compile: # CUDAGraph marking for clean compile
                     torch.compiler.cudagraph_mark_step_begin()

                if args.model == 'ctm':
                    predictions, certainties, synchronisation = model(inputs)
                    loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
                    accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
                    pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'

                elif args.model == 'lstm':
                    predictions, certainties, synchronisation = model(inputs)
                    loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
                    # LSTM where_most_certain will just be -1 because use_most_certain is False owing to stability issues with LSTM training
                    accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
                    pbar_desc = f'LSTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'

                elif args.model == 'ff':
                    predictions = model(inputs)
                    loss = nn.CrossEntropyLoss()(predictions, targets)
                    accuracy = (predictions.argmax(1) == targets).float().mean().item()
                    pbar_desc = f'FF Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'

            scaler.scale(loss).backward()

            if args.gradient_clipping!=-1:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)

            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad(set_to_none=True)
            scheduler.step()

            pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')


            # Metrics tracking and plotting (conditional logic needed)
            if (bi % args.track_every == 0 or bi == args.warmup_steps) and (bi != 0 or args.reload_model_only):

                iters.append(bi)
                current_train_losses = []
                current_test_losses = []
                current_train_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
                current_test_accuracies = [] # Holds list of accuracies per tick for CTM/LSTM, single value for FF
                current_train_accuracies_most_certain = [] # Only for CTM/LSTM
                current_test_accuracies_most_certain = [] # Only for CTM/LSTM


                # Reset BN stats using train mode
                pbar.set_description('Resetting BN')
                model.train()
                for module in model.modules():
                    if isinstance(module, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
                        module.reset_running_stats()

                pbar.set_description('Tracking: Computing TRAIN metrics')
                with torch.no_grad(): # Should use inference_mode? CTM/LSTM scripts used no_grad
                    loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
                    all_targets_list = []
                    all_predictions_list = [] # List to store raw predictions (B, C, T) or (B, C)
                    all_predictions_most_certain_list = [] # Only for CTM/LSTM
                    all_losses = []

                    with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
                        for inferi, (inputs, targets) in enumerate(loader):
                            inputs = inputs.to(device)
                            targets = targets.to(device)
                            all_targets_list.append(targets.detach().cpu().numpy())

                            # Model-specific forward and loss for evaluation
                            if args.model == 'ctm':
                                these_predictions, certainties, _ = model(inputs)
                                loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
                                all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)

                            elif args.model == 'lstm':
                                these_predictions, certainties, _ = model(inputs)
                                loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B, T)
                                all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy()) # Shape (B,)

                            elif args.model == 'ff':
                                these_predictions = model(inputs)
                                loss = nn.CrossEntropyLoss()(these_predictions, targets)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy()) # Shape (B,)

                            all_losses.append(loss.item())

                            if args.n_test_batches != -1 and inferi >= args.n_test_batches -1 : break # Check condition >= N-1
                            pbar_inner.set_description(f'Computing metrics for train (Batch {inferi+1})')
                            pbar_inner.update(1)

                    all_targets = np.concatenate(all_targets_list)
                    all_predictions = np.concatenate(all_predictions_list) # Shape (N, T) or (N,)
                    train_losses.append(np.mean(all_losses))

                    if args.model in ['ctm', 'lstm']:
                        # Accuracies per tick for CTM/LSTM
                        current_train_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0) # Mean over batch dim -> Shape (T,)
                        train_accuracies.append(current_train_accuracies)
                        # Most certain accuracy
                        all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
                        current_train_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
                        train_accuracies_most_certain.append(current_train_accuracies_most_certain)
                    else: # FF
                         current_train_accuracies = (all_targets == all_predictions).mean() # Shape scalar
                         train_accuracies.append(current_train_accuracies)
                
                del these_predictions
                

                # Switch to eval mode for test metrics (fixed BN stats)
                model.eval()
                pbar.set_description('Tracking: Computing TEST metrics')
                with torch.inference_mode(): # Use inference_mode for test eval
                    loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
                    all_targets_list = []
                    all_predictions_list = []
                    all_predictions_most_certain_list = [] # Only for CTM/LSTM
                    all_losses = []

                    with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
                       for inferi, (inputs, targets) in enumerate(loader):
                            inputs = inputs.to(device)
                            targets = targets.to(device)
                            all_targets_list.append(targets.detach().cpu().numpy())

                            # Model-specific forward and loss for evaluation
                            if args.model == 'ctm':
                                these_predictions, certainties, _ = model(inputs)
                                loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
                                all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())

                            elif args.model == 'lstm':
                                these_predictions, certainties, _ = model(inputs)
                                loss, where_most_certain = image_classification_loss(these_predictions, certainties, targets, use_most_certain=True)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())
                                all_predictions_most_certain_list.append(these_predictions.argmax(1)[torch.arange(these_predictions.size(0), device=these_predictions.device), where_most_certain].detach().cpu().numpy())

                            elif args.model == 'ff':
                                these_predictions = model(inputs)
                                loss = nn.CrossEntropyLoss()(these_predictions, targets)
                                all_predictions_list.append(these_predictions.argmax(1).detach().cpu().numpy())

                            all_losses.append(loss.item())

                            if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
                            pbar_inner.set_description(f'Computing metrics for test (Batch {inferi+1})')
                            pbar_inner.update(1)

                    all_targets = np.concatenate(all_targets_list)
                    all_predictions = np.concatenate(all_predictions_list)
                    test_losses.append(np.mean(all_losses))

                    if args.model in ['ctm', 'lstm']:
                        current_test_accuracies = np.mean(all_predictions == all_targets[...,np.newaxis], axis=0)
                        test_accuracies.append(current_test_accuracies)
                        all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
                        current_test_accuracies_most_certain = (all_targets == all_predictions_most_certain).mean()
                        test_accuracies_most_certain.append(current_test_accuracies_most_certain)
                    else: # FF
                         current_test_accuracies = (all_targets == all_predictions).mean()
                         test_accuracies.append(current_test_accuracies)

                # Plotting (conditional)
                figacc = plt.figure(figsize=(10, 10))
                axacc_train = figacc.add_subplot(211)
                axacc_test = figacc.add_subplot(212)
                cm = sns.color_palette("viridis", as_cmap=True)

                if args.model in ['ctm', 'lstm']:
                    # Plot per-tick accuracy for CTM/LSTM
                    train_acc_arr = np.array(train_accuracies) # Shape (N_iters, T)
                    test_acc_arr = np.array(test_accuracies) # Shape (N_iters, T)
                    num_ticks = train_acc_arr.shape[1]
                    for ti in range(num_ticks):
                         axacc_train.plot(iters, train_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
                         axacc_test.plot(iters, test_acc_arr[:, ti], color=cm(ti / num_ticks), alpha=0.3)
                    # Plot most certain accuracy
                    axacc_train.plot(iters, train_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
                    axacc_test.plot(iters, test_accuracies_most_certain, 'k--', alpha=0.7, label='Most certain')
                else: # FF
                    axacc_train.plot(iters, train_accuracies, 'k-', alpha=0.7, label='Accuracy') # Simple line
                    axacc_test.plot(iters, test_accuracies, 'k-', alpha=0.7, label='Accuracy')

                axacc_train.set_title('Train Accuracy')
                axacc_test.set_title('Test Accuracy')
                axacc_train.legend(loc='lower right')
                axacc_test.legend(loc='lower right')
                axacc_train.set_xlim([0, args.training_iterations])
                axacc_test.set_xlim([0, args.training_iterations])
                if args.dataset=='cifar10':
                    axacc_train.set_ylim([0.75, 1])
                    axacc_test.set_ylim([0.75, 1])



                figacc.tight_layout()
                figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
                plt.close(figacc)

                figloss = plt.figure(figsize=(10, 5))
                axloss = figloss.add_subplot(111)
                axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]:.4f}')
                axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]:.4f}')
                axloss.legend(loc='upper right')
                axloss.set_xlim([0, args.training_iterations])
                axloss.set_ylim(bottom=0)

                figloss.tight_layout()
                figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
                plt.close(figloss)

                # Conditional Visualization (Only for CTM/LSTM)
                if args.model in ['ctm', 'lstm']:
                    try: # For safety
                        inputs_viz, targets_viz = next(iter(testloader)) # Get a fresh batch
                        inputs_viz = inputs_viz.to(device)
                        targets_viz = targets_viz.to(device)

                        pbar.set_description('Tracking: Processing test data for viz')
                        predictions_viz, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)

                        att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
                        attention_tracking_viz = attention_tracking_viz.reshape(
                            attention_tracking_viz.shape[0], 
                            attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])

                        pbar.set_description('Tracking: Neural dynamics plot')
                        plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)

                        imgi = 0 # Visualize the first image in the batch
                        img_to_gif = np.moveaxis(np.clip(inputs_viz[imgi].detach().cpu().numpy()*np.array(dataset_std).reshape(len(dataset_std), 1, 1) + np.array(dataset_mean).reshape(len(dataset_mean), 1, 1), 0, 1), 0, -1)

                        pbar.set_description('Tracking: Producing attention gif')
                        make_classification_gif(img_to_gif,
                                                targets_viz[imgi].item(),
                                                predictions_viz[imgi].detach().cpu().numpy(),
                                                certainties_viz[imgi].detach().cpu().numpy(),
                                                post_activations_viz[:,imgi], 
                                                attention_tracking_viz[:,imgi], 
                                                class_labels,
                                                f'{args.log_dir}/{imgi}_attention.gif',
                                                )
                        del predictions_viz, certainties_viz, pre_activations_viz, post_activations_viz, attention_tracking_viz
                    except Exception as e:
                        print(f"Visualization failed for model {args.model}: {e}")
                    
                    

                gc.collect()
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                model.train() # Switch back to train mode


            # Save model checkpoint (conditional metrics)
            if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
                pbar.set_description('Saving model checkpoint...')
                checkpoint_data = {
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'scheduler_state_dict': scheduler.state_dict(),
                    'scaler_state_dict': scaler.state_dict(),
                    'iteration': bi,
                    # Always save these
                    'train_losses': train_losses,
                    'test_losses': test_losses,
                    'train_accuracies': train_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
                    'test_accuracies': test_accuracies, # This is list of scalars for FF, list of arrays for CTM/LSTM
                    'iters': iters,
                    'args': args, # Save args used for this run
                    # RNG states
                    'torch_rng_state': torch.get_rng_state(),
                    'numpy_rng_state': np.random.get_state(),
                    'random_rng_state': random.getstate(),
                }
                # Conditionally add metrics specific to CTM/LSTM
                if args.model in ['ctm', 'lstm']:
                    checkpoint_data['train_accuracies_most_certain'] = train_accuracies_most_certain
                    checkpoint_data['test_accuracies_most_certain'] = test_accuracies_most_certain

                torch.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')

            pbar.update(1)