File size: 10,312 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch.nn as nn
import torch
import numpy as np
import math

from models.modules import ParityBackbone, LearnableFourierPositionalEncoding, MultiLearnableFourierPositionalEncoding, CustomRotationalEmbedding, CustomRotationalEmbedding1D, ShallowWide
from models.resnet import prepare_resnet_backbone
from models.utils import compute_normalized_entropy

from models.constants import (
    VALID_BACKBONE_TYPES,
    VALID_POSITIONAL_EMBEDDING_TYPES
)

class LSTMBaseline(nn.Module):
    """
    LSTM Baseline

    Args:
        iterations (int): Number of internal 'thought' steps (T, in paper).
        d_model (int): Core dimensionality of the latent space.
        d_input (int): Dimensionality of projected attention outputs or direct input features.
        heads (int): Number of attention heads.
        backbone_type (str): Type of feature extraction backbone (e.g., 'resnet18-2', 'none').
        positional_embedding_type (str): Type of positional embedding for backbone features.
        out_dims (int): Dimensionality of the final output projection.
        prediction_reshaper (list): Shape for reshaping predictions before certainty calculation (task-specific).
        dropout (float): Dropout rate.
    """

    def __init__(self,
                 iterations,
                 d_model,
                 d_input,
                 heads,
                 backbone_type,
                 num_layers,
                 positional_embedding_type,
                 out_dims,
                 prediction_reshaper=[-1],
                 dropout=0,
                 ):
        super(LSTMBaseline, self).__init__()

        # --- Core Parameters ---
        self.iterations = iterations
        self.d_model = d_model
        self.d_input = d_input
        self.prediction_reshaper = prediction_reshaper
        self.backbone_type = backbone_type
        self.positional_embedding_type = positional_embedding_type
        self.out_dims = out_dims

        # --- Assertions ---
        self.verify_args()

        # --- Input Processing  ---
        d_backbone = self.get_d_backbone()

        self.set_initial_rgb()
        self.set_backbone()
        self.positional_embedding = self.get_positional_embedding(d_backbone)
        self.kv_proj = self.get_kv_proj()
        self.lstm = nn.LSTM(d_input, d_model, num_layers, batch_first=True, dropout=dropout)
        self.q_proj = self.get_q_proj()
        self.attention = self.get_attention(heads, dropout)
        self.output_projector = nn.Sequential(nn.LazyLinear(out_dims))

        #  --- Start States ---
        self.register_parameter('start_hidden_state', nn.Parameter(torch.zeros((num_layers, d_model)).uniform_(-math.sqrt(1/(d_model)), math.sqrt(1/(d_model))), requires_grad=True))
        self.register_parameter('start_cell_state', nn.Parameter(torch.zeros((num_layers, d_model)).uniform_(-math.sqrt(1/(d_model)), math.sqrt(1/(d_model))), requires_grad=True))



    # --- Core LSTM Methods ---

    def compute_features(self, x):
        """Applies backbone and positional embedding to input."""
        x = self.initial_rgb(x)
        self.kv_features = self.backbone(x)
        pos_emb = self.positional_embedding(self.kv_features)
        combined_features = (self.kv_features + pos_emb).flatten(2).transpose(1, 2)
        kv = self.kv_proj(combined_features)
        return kv

    def compute_certainty(self, current_prediction):
        """Compute the certainty of the current prediction."""
        B = current_prediction.size(0)
        reshaped_pred = current_prediction.reshape([B] +self.prediction_reshaper)
        ne = compute_normalized_entropy(reshaped_pred)
        current_certainty = torch.stack((ne, 1-ne), -1)
        return current_certainty

    # --- Setup Methods ---

    def set_initial_rgb(self):
        """Set the initial RGB processing module based on the backbone type."""
        if 'resnet' in self.backbone_type:
            self.initial_rgb = nn.LazyConv2d(3, 1, 1) # Adapts input channels lazily
        else:
            self.initial_rgb = nn.Identity()

    def get_d_backbone(self):
        """
        Get the dimensionality of the backbone output, to be used for positional embedding setup.

        This is a little bit complicated for resnets, but the logic should be easy enough to read below.        
        """
        if self.backbone_type == 'shallow-wide':
            return 2048
        elif self.backbone_type == 'parity_backbone':
            return self.d_input
        elif 'resnet' in self.backbone_type:
            if '18' in self.backbone_type or '34' in self.backbone_type: 
                if self.backbone_type.split('-')[1]=='1': return 64
                elif self.backbone_type.split('-')[1]=='2': return 128
                elif self.backbone_type.split('-')[1]=='3': return 256
                elif self.backbone_type.split('-')[1]=='4': return 512
                else:
                    raise NotImplementedError
            else:
                if self.backbone_type.split('-')[1]=='1': return 256
                elif self.backbone_type.split('-')[1]=='2': return 512
                elif self.backbone_type.split('-')[1]=='3': return 1024
                elif self.backbone_type.split('-')[1]=='4': return 2048
                else:
                    raise NotImplementedError
        elif self.backbone_type == 'none':
            return None
        else:
            raise ValueError(f"Invalid backbone_type: {self.backbone_type}")

    def set_backbone(self):
        """Set the backbone module based on the specified type."""
        if self.backbone_type == 'shallow-wide':
            self.backbone = ShallowWide()
        elif self.backbone_type == 'parity_backbone':
            d_backbone = self.get_d_backbone()
            self.backbone = ParityBackbone(n_embeddings=2, d_embedding=d_backbone)
        elif 'resnet' in self.backbone_type:
            self.backbone = prepare_resnet_backbone(self.backbone_type)
        elif self.backbone_type == 'none':
            self.backbone = nn.Identity()
        else:
            raise ValueError(f"Invalid backbone_type: {self.backbone_type}")

    def get_positional_embedding(self, d_backbone):
        """Get the positional embedding module."""
        if self.positional_embedding_type == 'learnable-fourier':
            return LearnableFourierPositionalEncoding(d_backbone, gamma=1 / 2.5)
        elif self.positional_embedding_type == 'multi-learnable-fourier':
            return MultiLearnableFourierPositionalEncoding(d_backbone)
        elif self.positional_embedding_type == 'custom-rotational':
            return CustomRotationalEmbedding(d_backbone)
        elif self.positional_embedding_type == 'custom-rotational-1d':
            return CustomRotationalEmbedding1D(d_backbone)
        elif self.positional_embedding_type == 'none':
            return lambda x: 0  # Default no-op
        else:
            raise ValueError(f"Invalid positional_embedding_type: {self.positional_embedding_type}")

    def get_attention(self, heads, dropout):
        """Get the attention module."""
        return nn.MultiheadAttention(self.d_input, heads, dropout, batch_first=True)

    def get_kv_proj(self):
        """Get the key-value projection module."""
        return nn.Sequential(nn.LazyLinear(self.d_input), nn.LayerNorm(self.d_input))

    def get_q_proj(self):
        """Get the query projection module."""
        return nn.LazyLinear(self.d_input)


    def verify_args(self):
        """Verify the validity of the input arguments."""

        assert self.backbone_type in VALID_BACKBONE_TYPES + ['none'], \
            f"Invalid backbone_type: {self.backbone_type}"
        
        assert self.positional_embedding_type in VALID_POSITIONAL_EMBEDDING_TYPES + ['none'], \
            f"Invalid positional_embedding_type: {self.positional_embedding_type}"
        
        if self.backbone_type=='none' and self.positional_embedding_type!='none':
            raise AssertionError("There should be no positional embedding if there is no backbone.")

        pass




    def forward(self, x, track=False):
        """
        Forward pass - Reverted to structure closer to user's working version.
        Executes T=iterations steps.
        """
        B = x.size(0)
        device = x.device

        # --- Tracking Initialization ---
        activations_tracking = []
        attention_tracking = []

        # --- Featurise Input Data ---
        kv = self.compute_features(x)

        # --- Initialise Recurrent State ---
        hn = torch.repeat_interleave(self.start_hidden_state.unsqueeze(1), x.size(0), 1)
        cn = torch.repeat_interleave(self.start_cell_state.unsqueeze(1), x.size(0), 1)
        state_trace = [hn[-1]]

        # --- Prepare Storage for Outputs per Iteration ---
        predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=x.dtype)
        certainties = torch.empty(B, 2, self.iterations, device=device, dtype=x.dtype)

        # --- Recurrent Loop  ---
        for stepi in range(self.iterations):

            # --- Interact with Data via Attention ---
            q = self.q_proj(hn[-1].unsqueeze(1))
            attn_out, attn_weights = self.attention(q, kv, kv, average_attn_weights=False, need_weights=True)
            lstm_input = attn_out

            # --- Apply LSTM ---
            hidden_state, (hn,cn) = self.lstm(lstm_input, (hn, cn))
            hidden_state = hidden_state.squeeze(1)
            state_trace.append(hidden_state)

            # --- Get Predictions and Certainties ---
            current_prediction = self.output_projector(hidden_state)
            current_certainty = self.compute_certainty(current_prediction)

            predictions[..., stepi] = current_prediction
            certainties[..., stepi] = current_certainty

            # --- Tracking ---
            if track:
                activations_tracking.append(hidden_state.squeeze(1).detach().cpu().numpy())
                attention_tracking.append(attn_weights.detach().cpu().numpy())

        # --- Return Values ---
        if track:
            return predictions, certainties, None, np.zeros_like(activations_tracking), np.array(activations_tracking), np.array(attention_tracking)
        return predictions, certainties, None