ctm-energy-based-halting / data /custom_datasets.py
LukeDarlow's picture
Welcome to the CTM. This is the first commit of the public repo. Enjoy!
68b32f4
raw
history blame
12.8 kB
import torch
from torchvision.datasets import ImageFolder
from torch.utils.data import Dataset
import random
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from datasets import load_dataset
class SortDataset(Dataset):
def __init__(self, N):
self.N = N
def __len__(self):
return 10000000
def __getitem__(self, idx):
data = torch.zeros(self.N).normal_()
ordering = torch.argsort(data)
inputs = data
return (inputs), (ordering)
class QAMNISTDataset(Dataset):
"""A QAMNIST dataset that includes plus and minus operations on MNIST digits."""
def __init__(self, base_dataset, num_images, num_images_delta, num_repeats_per_input, num_operations, num_operations_delta):
self.base_dataset = base_dataset
self.num_images = num_images
self.num_images_delta = num_images_delta
self.num_images_range = self._calculate_num_images_range()
self.operators = ["+", "-"]
self.num_operations = num_operations
self.num_operations_delta = num_operations_delta
self.num_operations_range = self._calculate_num_operations_range()
self.num_repeats_per_input = num_repeats_per_input
self.current_num_digits = num_images
self.current_num_operations = num_operations
self.modulo_base = 10
self.output_range = [0, 9]
def _calculate_num_images_range(self):
min_val = self.num_images - self.num_images_delta
max_val = self.num_images + self.num_images_delta
assert min_val >= 1, f"Minimum number of images must be at least 1, got {min_val}"
return [min_val, max_val]
def _calculate_num_operations_range(self):
min_val = self.num_operations - self.num_operations_delta
max_val = self.num_operations + self.num_operations_delta
assert min_val >= 1, f"Minimum number of operations must be at least 1, got {min_val}"
return [min_val, max_val]
def set_num_digits(self, num_digits):
self.current_num_digits = num_digits
def set_num_operations(self, num_operations):
self.current_num_operations = num_operations
def _get_target_and_question(self, targets):
question = []
equations = []
num_digits = self.current_num_digits
num_operations = self.current_num_operations
# Select the initial digit
selection_idx = np.random.randint(num_digits)
first_digit = targets[selection_idx]
question.extend([selection_idx] * self.num_repeats_per_input)
# Set current_value to the initial digit (mod is applied in each operation)
current_value = first_digit % self.modulo_base
# For each operation, build an equation line
for _ in range(num_operations):
# Choose the operator ('+' or '-')
operator_idx = np.random.randint(len(self.operators))
operator = self.operators[operator_idx]
encoded_operator = -(operator_idx + 1) # -1 for '+', -2 for '-'
question.extend([encoded_operator] * self.num_repeats_per_input)
# Choose the next digit
selection_idx = np.random.randint(num_digits)
digit = targets[selection_idx]
question.extend([selection_idx] * self.num_repeats_per_input)
# Compute the new value with immediate modulo reduction
if operator == '+':
new_value = (current_value + digit) % self.modulo_base
else: # operator is '-'
new_value = (current_value - digit) % self.modulo_base
# Build the equation string for this step
equations.append(f"({current_value} {operator} {digit}) mod {self.modulo_base} = {new_value}")
# Update current value for the next operation
current_value = new_value
target = current_value
question_readable = "\n".join(equations)
return target, question, question_readable
def __len__(self):
return len(self.base_dataset)
def __getitem__(self, idx):
images, targets = [],[]
for _ in range(self.current_num_digits):
image, target = self.base_dataset[np.random.randint(self.__len__())]
images.append(image)
targets.append(target)
observations = torch.repeat_interleave(torch.stack(images, 0), repeats=self.num_repeats_per_input, dim=0)
target, question, question_readable = self._get_target_and_question(targets)
return observations, question, question_readable, target
class ImageNet(Dataset):
def __init__(self, which_split, transform):
"""
Most simple form of the custom dataset structure.
Args:
base_dataset (Dataset): The base dataset to sample from.
N (int): The number of images to construct into an observable sequence.
R (int): number of repeats
operators (list): list of operators from which to sample
action to take on observations (str): can be 'global' to compute operator over full observations, or 'select_K', where K=integer.
"""
dataset = load_dataset('imagenet-1k', split=which_split, trust_remote_code=True)
self.transform = transform
self.base_dataset = dataset
def __len__(self):
return len(self.base_dataset)
def __getitem__(self, idx):
data_item = self.base_dataset[idx]
image = self.transform(data_item['image'].convert('RGB'))
target = data_item['label']
return image, target
class MazeImageFolder(ImageFolder):
"""
A custom dataset class that extends the ImageFolder class.
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
loader (callable, optional): A function to load an image given its path.
is_valid_file (callable, optional): A function that takes path of an Image file
and check if the file is a valid file (used to check of corrupt files)
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=Image.open,
is_valid_file=None,
which_set='train',
augment_p=0.5,
maze_route_length=10,
trunc=False,
expand_range=True):
super(MazeImageFolder, self).__init__(root, transform, target_transform, loader, is_valid_file)
self.which_set = which_set
self.augment_p = augment_p
self.maze_route_length = maze_route_length
self.all_paths = {}
self.trunc = trunc
self.expand_range = expand_range
self._preload()
print('Solving all mazes...')
for index in range(len(self.preloaded_samples)):
path = self.get_solution(self.preloaded_samples[index])
self.all_paths[index] = path
def _preload(self):
preloaded_samples = []
with tqdm(total=self.__len__(), initial=0, leave=True, position=0, dynamic_ncols=True) as pbar:
for index in range(self.__len__()):
pbar.set_description('Loading mazes')
path, target = self.samples[index]
sample = self.loader(path)
sample = np.array(sample).astype(np.float32)/255
preloaded_samples.append(sample)
pbar.update(1)
if self.trunc and index == 999: break
self.preloaded_samples = preloaded_samples
def __len__(self):
if hasattr(self, 'preloaded_samples') and self.preloaded_samples is not None:
return len(self.preloaded_samples)
else:
return super().__len__()
def get_solution(self, x):
x = np.copy(x)
# Find start (red) and end (green) pixel coordinates
start_coords = np.argwhere((x == [1, 0, 0]).all(axis=2))
end_coords = np.argwhere((x == [0, 1, 0]).all(axis=2))
if len(start_coords) == 0 or len(end_coords) == 0:
print("Start or end point not found.")
return None
start_y, start_x = start_coords[0]
end_y, end_x = end_coords[0]
current_y, current_x = start_y, start_x
path = [4] * self.maze_route_length
pi = 0
while (current_y, current_x) != (end_y, end_x):
next_y, next_x = -1, -1 # Initialize to invalid coordinates
direction = -1 # Initialize to an invalid direction
# Check Up
if current_y > 0 and ((x[current_y - 1, current_x] == [0, 0, 1]).all() or (x[current_y - 1, current_x] == [0, 1, 0]).all()):
next_y, next_x = current_y - 1, current_x
direction = 0
# Check Down
elif current_y < x.shape[0] - 1 and ((x[current_y + 1, current_x] == [0, 0, 1]).all() or (x[current_y + 1, current_x] == [0, 1, 0]).all()):
next_y, next_x = current_y + 1, current_x
direction = 1
# Check Left
elif current_x > 0 and ((x[current_y, current_x - 1] == [0, 0, 1]).all() or (x[current_y, current_x - 1] == [0, 1, 0]).all()):
next_y, next_x = current_y, current_x - 1
direction = 2
# Check Right
elif current_x < x.shape[1] - 1 and ((x[current_y, current_x + 1] == [0, 0, 1]).all() or (x[current_y, current_x + 1] == [0, 1, 0]).all()):
next_y, next_x = current_y, current_x + 1
direction = 3
path[pi] = direction
pi += 1
x[current_y, current_x] = [255,255,255] # mark the current as white to avoid going in circles
current_y, current_x = next_y, next_x
if pi == len(path):
break
return np.array(path)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
sample = np.copy(self.preloaded_samples[index])
path = np.copy(self.all_paths[index])
if self.which_set == 'train':
# Randomly rotate -90 or +90 degrees
if random.random() < self.augment_p:
which_rot = random.choice([-1, 1])
sample = np.rot90(sample, k=which_rot, axes=(0, 1))
for pi in range(len(path)):
if path[pi] == 0: path[pi] = 3 if which_rot == -1 else 2
elif path[pi] == 1: path[pi] = 2 if which_rot == -1 else 3
elif path[pi] == 2: path[pi] = 0 if which_rot == -1 else 1
elif path[pi] == 3: path[pi] = 1 if which_rot == -1 else 0
# Random horizontal flip
if random.random() < self.augment_p:
sample = np.fliplr(sample)
for pi in range(len(path)):
if path[pi] == 2: path[pi] = 3
elif path[pi] == 3: path[pi] = 2
# Random vertical flip
if random.random() < self.augment_p:
sample = np.flipud(sample)
for pi in range(len(path)):
if path[pi] == 0: path[pi] = 1
elif path[pi] == 1: path[pi] = 0
sample = torch.from_numpy(np.copy(sample)).permute(2,0,1)
blue_mask = (sample[0] == 0) & (sample[1] == 0) & (sample[2] == 1)
sample[:, blue_mask] = 1
target = path
if not self.expand_range:
return sample, target
return (sample*2)-1, (target)
class ParityDataset(Dataset):
def __init__(self, sequence_length=64, length=100000):
self.sequence_length = sequence_length
self.length = length
def __len__(self):
return self.length
def __getitem__(self, idx):
vector = 2 * torch.randint(0, 2, (self.sequence_length,)) - 1
vector = vector.float()
negatives = (vector == -1).to(torch.long)
cumsum = torch.cumsum(negatives, dim=0)
target = (cumsum % 2 != 0).to(torch.long)
return vector, target