ctm-energy-based-halting / tasks /mazes /train_distributed.py
LukeDarlow's picture
Welcome to the CTM. This is the first commit of the public repo. Enjoy!
68b32f4
raw
history blame
43.4 kB
import argparse
import os
import random
import gc
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from utils.samplers import FastRandomDistributedSampler
from tqdm.auto import tqdm
# Data/Task Specific Imports
from data.custom_datasets import MazeImageFolder
# Model Imports
from models.ctm import ContinuousThoughtMachine
from models.lstm import LSTMBaseline
from models.ff import FFBaseline
# Plotting/Utils Imports
from tasks.mazes.plotting import make_maze_gif
from tasks.image_classification.plotting import plot_neural_dynamics
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import maze_loss
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
import torchvision
torchvision.disable_beta_transforms_warning()
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$"
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$"
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$"
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Selection
parser.add_argument('--model', type=str, required=True, choices=['ctm', 'lstm', 'ff'], help='Model type to train.')
# Model Architecture
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--backbone_type', type=str, default='resnet34-2', help='Type of backbone featureiser.')
# CTM / LSTM specific
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
parser.add_argument('--heads', type=int, default=8, help='Number of attention heads (CTM, LSTM).')
parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
parser.add_argument('--positional_embedding_type', type=str, default='none',
help='Type of positional embedding (CTM, LSTM).', choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# CTM specific
parser.add_argument('--synapse_depth', type=int, default=8, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).')
parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch (CTM only).')
parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch (CTM only).')
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True, help='Use deep memory (CTM only).')
parser.add_argument('--memory_hidden_dims', type=int, default=32, help='Hidden dimensions of the memory if using deep memory (CTM only).')
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
# LSTM specific
parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).')
# Task Specific Args
parser.add_argument('--maze_route_length', type=int, default=100, help='Length to truncate targets.')
parser.add_argument('--cirriculum_lookahead', type=int, default=5, help='How far to look ahead for cirriculum.')
# Training
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training (per GPU).')
parser.add_argument('--batch_size_test', type=int, default=64, help='Batch size for testing (per GPU).')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for the model.')
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--num_workers_train', type=int, default=0, help='Num workers training.')
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--use_custom_sampler', action=argparse.BooleanOptionalAction, default=False, help='Use custom fast sampler to avoid reshuffling.')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components.')
# Logging and Saving
parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
parser.add_argument('--dataset', type=str, default='mazes-medium', help='Dataset to use.', choices=['mazes-medium', 'mazes-large'])
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?') # Default False based on user edit
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=False, help='Should use strict reload for model weights.')
parser.add_argument('--ignore_metrics_when_reloading', action=argparse.BooleanOptionalAction, default=False, help='Ignore metrics when reloading (for debugging)?')
# Tracking
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=2, help='How many minibatches to approx metrics. Set to -1 for full eval')
# Precision
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
args = parser.parse_args()
return args
# --- DDP Setup Functions ---
def setup_ddp():
if 'RANK' not in os.environ:
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12356' # Different port from image classification
os.environ['LOCAL_RANK'] = '0'
print("Running in non-distributed mode (simulated DDP setup).")
if not torch.cuda.is_available() or int(os.environ['WORLD_SIZE']) == 1:
dist.init_process_group(backend='gloo')
print("Initialized process group with Gloo backend for single/CPU process.")
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
local_rank = int(os.environ['LOCAL_RANK'])
return rank, world_size, local_rank
dist.init_process_group(backend='nccl')
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
local_rank = int(os.environ['LOCAL_RANK'])
if torch.cuda.is_available():
torch.cuda.set_device(local_rank)
print(f"Rank {rank} setup on GPU {local_rank}")
else:
print(f"Rank {rank} setup on CPU")
return rank, world_size, local_rank
def cleanup_ddp():
if dist.is_initialized():
dist.destroy_process_group()
print("DDP cleanup complete.")
def is_main_process(rank):
return rank == 0
# --- End DDP Setup ---
if __name__=='__main__':
args = parse_args()
rank, world_size, local_rank = setup_ddp()
set_seed(args.seed + rank, False)
# Rank 0 handles directory creation and initial logging
if is_main_process(rank):
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
if world_size > 1: dist.barrier()
assert args.dataset in ['mazes-medium', 'mazes-large']
# Setup Device
if torch.cuda.is_available():
device = torch.device(f'cuda:{local_rank}')
else:
device = torch.device('cpu')
if world_size > 1: warnings.warn("Running DDP on CPU is not recommended.")
if is_main_process(rank):
print(f'Main process (Rank {rank}): Using device {device}. World size: {world_size}. Model: {args.model}')
prediction_reshaper = [args.maze_route_length, 5]
args.out_dims = args.maze_route_length * 5
# --- Model Definition (Conditional) ---
model_base = None # Base model before DDP wrapping
if args.model == 'ctm':
model_base = ContinuousThoughtMachine(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
elif args.model == 'lstm':
model_base = LSTMBaseline(
num_layers=args.num_layers,
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
).to(device)
elif args.model == 'ff':
model_base = FFBaseline(
d_model=args.d_model,
backbone_type=args.backbone_type,
out_dims=args.out_dims,
dropout=args.dropout,
).to(device)
else:
raise ValueError(f"Unknown model type: {args.model}")
# Use pseudo-input *before* DDP wrapping
try:
# Determine pseudo input shape based on dataset
h_w = 39 if args.dataset in ['mazes-small', 'mazes-medium'] else 99 # Example dimensions
pseudo_inputs = torch.zeros((1, 3, h_w, h_w), device=device).float()
model_base(pseudo_inputs)
except Exception as e:
print(f"Warning: Pseudo forward pass failed: {e}")
if is_main_process(rank):
print(f'Total params: {sum(p.numel() for p in model_base.parameters() if p.requires_grad)}')
# Wrap model with DDP
if device.type == 'cuda' and world_size > 1:
model = DDP(model_base, device_ids=[local_rank], output_device=local_rank)
elif device.type == 'cpu' and world_size > 1:
model = DDP(model_base)
else:
model = model_base
# --- End Model Definition ---
# Data Loading (After model setup to allow pseudo pass first)
dataset_mean = [0,0,0]
dataset_std = [1,1,1]
which_maze = args.dataset.split('-')[-1]
data_root = f'data/mazes/{which_maze}'
train_data = MazeImageFolder(root=f'{data_root}/train/', which_set='train', maze_route_length=args.maze_route_length)
test_data = MazeImageFolder(root=f'{data_root}/test/', which_set='test', maze_route_length=args.maze_route_length)
train_sampler = (FastRandomDistributedSampler(train_data, num_replicas=world_size, rank=rank, seed=args.seed, epoch_steps=int(10e10))
if args.use_custom_sampler else
DistributedSampler(train_data, num_replicas=world_size, rank=rank, shuffle=True, seed=args.seed))
test_sampler = DistributedSampler(test_data, num_replicas=world_size, rank=rank, shuffle=False, seed=args.seed)
num_workers_test = 1
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, sampler=train_sampler,
num_workers=args.num_workers_train, pin_memory=True, drop_last=True)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, sampler=test_sampler,
num_workers=num_workers_test, pin_memory=True, drop_last=False)
# Optimizer and scheduler
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names) and is_main_process(rank):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking (Rank 0 stores history)
start_iter = 0
iters = []
train_losses, test_losses = [], []
train_accuracies, test_accuracies = [], [] # Avg Step Acc (scalar list)
train_accuracies_most_certain, test_accuracies_most_certain = [], [] # Avg Step Acc @ Certain tick (scalar list)
train_accuracies_most_certain_permaze, test_accuracies_most_certain_permaze = [], [] # Full Maze Acc @ Certain tick (scalar list)
scaler = torch.amp.GradScaler("cuda" if device.type == 'cuda' else "cpu", enabled=args.use_amp)
# Reloading Logic
if args.reload:
map_location = device
chkpt_path = f'{args.log_dir}/checkpoint.pt'
if os.path.isfile(chkpt_path):
print(f'Rank {rank}: Reloading from: {chkpt_path}')
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
checkpoint = torch.load(chkpt_path, map_location=map_location, weights_only=False)
model_to_load = model.module if isinstance(model, DDP) else model
state_dict = checkpoint['model_state_dict']
has_module_prefix = all(k.startswith('module.') for k in state_dict)
is_wrapped = isinstance(model, DDP)
if has_module_prefix and not is_wrapped:
state_dict = {k.partition('module.')[2]: v for k,v in state_dict.items()}
elif not has_module_prefix and is_wrapped:
load_result = model_to_load.load_state_dict(state_dict, strict=args.strict_reload)
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
state_dict = None # Prevent loading again
if state_dict is not None:
load_result = model_to_load.load_state_dict(state_dict, strict=args.strict_reload)
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
if not args.reload_model_only:
print(f'Rank {rank}: Reloading optimizer, scheduler, scaler, iteration.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_iter = checkpoint['iteration']
if is_main_process(rank) and not args.ignore_metrics_when_reloading:
print(f'Rank {rank}: Reloading metrics history.')
iters = checkpoint['iters']
train_losses = checkpoint['train_losses']
test_losses = checkpoint['test_losses']
train_accuracies = checkpoint['train_accuracies'] # Reloading simplified avg step acc list
test_accuracies = checkpoint['test_accuracies']
train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']
train_accuracies_most_certain_permaze = checkpoint['train_accuracies_most_certain_permaze']
test_accuracies_most_certain_permaze = checkpoint['test_accuracies_most_certain_permaze']
elif is_main_process(rank) and args.ignore_metrics_when_reloading:
print(f'Rank {rank}: Ignoring metrics history upon reload.')
else:
print(f'Rank {rank}: Only reloading model weights!')
if is_main_process(rank) and 'torch_rng_state' in checkpoint and not args.reload_model_only:
print(f'Rank {rank}: Loading RNG states.')
torch.set_rng_state(checkpoint['torch_rng_state'].cpu())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"Rank {rank}: Reload finished, starting from iteration {start_iter}")
else:
print(f"Rank {rank}: Checkpoint not found at {chkpt_path}, starting from scratch.")
if world_size > 1: dist.barrier()
# Conditional Compilation
if args.do_compile:
if is_main_process(rank): print('Compiling model components...')
model_to_compile = model.module if isinstance(model, DDP) else model
if hasattr(model_to_compile, 'backbone'):
model_to_compile.backbone = torch.compile(model_to_compile.backbone, mode='reduce-overhead', fullgraph=True)
if args.model == 'ctm':
model_to_compile.synapses = torch.compile(model_to_compile.synapses, mode='reduce-overhead', fullgraph=True)
if world_size > 1: dist.barrier()
if is_main_process(rank): print('Compilation finished.')
# --- Training Loop ---
model.train()
pbar = tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True, disable=not is_main_process(rank))
iterator = iter(trainloader)
for bi in range(start_iter, args.training_iterations):
# --- Evaluation and Plotting (Rank 0 + Aggregation) ---
if bi % args.track_every == 0 and (bi != 0 or args.reload_model_only):
model.eval()
with torch.inference_mode():
# --- Distributed Evaluation ---
if is_main_process(rank): iters.append(bi) # Track iterations on rank 0
# Initialize accumulators on device
total_train_loss = torch.tensor(0.0, device=device)
total_train_correct_certain = torch.tensor(0.0, device=device) # Sum correct steps @ certain tick
total_train_mazes_solved = torch.tensor(0.0, device=device) # Sum solved mazes @ certain tick
total_train_steps = torch.tensor(0.0, device=device) # Total steps evaluated (B * S)
total_train_mazes = torch.tensor(0.0, device=device) # Total mazes evaluated (B)
# TRAIN METRICS
train_eval_sampler = DistributedSampler(train_data, num_replicas=world_size, rank=rank, shuffle=False)
train_eval_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, sampler=train_eval_sampler, num_workers=num_workers_test, pin_memory=True)
pbar_inner_desc = 'Eval Train (Rank 0)' if is_main_process(rank) else None
with tqdm(total=len(train_eval_loader), desc=pbar_inner_desc, leave=False, position=1, dynamic_ncols=True, disable=not is_main_process(rank)) as pbar_inner:
for inferi, (inputs, targets) in enumerate(train_eval_loader):
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True) # B, S
batch_size = inputs.size(0)
seq_len = targets.size(1)
loss_eval = None
pred_at_certain = None # Shape B, S
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(batch_size, -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss_eval, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
pred_at_certain = predictions.argmax(2)[torch.arange(batch_size, device=device), :, where_most_certain]
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(batch_size, -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss_eval, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False) # where = -1
pred_at_certain = predictions.argmax(2)[torch.arange(batch_size, device=device), :, where_most_certain]
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(batch_size, -1, 5) # B,S,C
loss_eval, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False) # where = -1
pred_at_certain = predictions.argmax(2)
# Accumulate metrics
total_train_loss += loss_eval * batch_size # Sum losses
correct_steps = (pred_at_certain == targets) # B, S boolean
total_train_correct_certain += correct_steps.sum() # Sum correct steps across batch
total_train_mazes_solved += correct_steps.all(dim=-1).sum() # Sum mazes where all steps are correct
total_train_steps += batch_size * seq_len
total_train_mazes += batch_size
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
pbar_inner.update(1)
# Aggregate Train Metrics
if world_size > 1:
dist.all_reduce(total_train_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(total_train_correct_certain, op=dist.ReduceOp.SUM)
dist.all_reduce(total_train_mazes_solved, op=dist.ReduceOp.SUM)
dist.all_reduce(total_train_steps, op=dist.ReduceOp.SUM)
dist.all_reduce(total_train_mazes, op=dist.ReduceOp.SUM)
# Calculate final Train metrics on Rank 0
if is_main_process(rank) and total_train_mazes > 0:
avg_train_loss = total_train_loss.item() / total_train_mazes.item() # Avg loss per maze/sample
avg_train_acc_step = total_train_correct_certain.item() / total_train_steps.item() # Avg correct step %
avg_train_acc_maze = total_train_mazes_solved.item() / total_train_mazes.item() # Avg full maze solved %
train_losses.append(avg_train_loss)
train_accuracies_most_certain.append(avg_train_acc_step)
train_accuracies_most_certain_permaze.append(avg_train_acc_maze)
# train_accuracies list remains unused/placeholder for this simplified metric structure
print(f"Iter {bi} Train Metrics (Agg): Loss={avg_train_loss:.4f}, StepAcc={avg_train_acc_step:.4f}, MazeAcc={avg_train_acc_maze:.4f}")
# TEST METRICS
total_test_loss = torch.tensor(0.0, device=device)
total_test_correct_certain = torch.tensor(0.0, device=device)
total_test_mazes_solved = torch.tensor(0.0, device=device)
total_test_steps = torch.tensor(0.0, device=device)
total_test_mazes = torch.tensor(0.0, device=device)
pbar_inner_desc = 'Eval Test (Rank 0)' if is_main_process(rank) else None
with tqdm(total=len(testloader), desc=pbar_inner_desc, leave=False, position=1, dynamic_ncols=True, disable=not is_main_process(rank)) as pbar_inner:
for inferi, (inputs, targets) in enumerate(testloader):
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
batch_size = inputs.size(0)
seq_len = targets.size(1)
loss_eval = None
pred_at_certain = None
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(batch_size, -1, 5, predictions_raw.size(-1))
loss_eval, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
pred_at_certain = predictions.argmax(2)[torch.arange(batch_size, device=device), :, where_most_certain]
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(batch_size, -1, 5, predictions_raw.size(-1))
loss_eval, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False)
pred_at_certain = predictions.argmax(2)[torch.arange(batch_size, device=device), :, where_most_certain]
elif args.model == 'ff':
predictions_raw = model(inputs)
predictions = predictions_raw.reshape(batch_size, -1, 5)
loss_eval, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False)
pred_at_certain = predictions.argmax(2)
total_test_loss += loss_eval * batch_size
correct_steps = (pred_at_certain == targets)
total_test_correct_certain += correct_steps.sum()
total_test_mazes_solved += correct_steps.all(dim=-1).sum()
total_test_steps += batch_size * seq_len
total_test_mazes += batch_size
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
pbar_inner.update(1)
# Aggregate Test Metrics
if world_size > 1:
dist.all_reduce(total_test_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(total_test_correct_certain, op=dist.ReduceOp.SUM)
dist.all_reduce(total_test_mazes_solved, op=dist.ReduceOp.SUM)
dist.all_reduce(total_test_steps, op=dist.ReduceOp.SUM)
dist.all_reduce(total_test_mazes, op=dist.ReduceOp.SUM)
# Calculate and Plot final Test metrics on Rank 0
if is_main_process(rank) and total_test_mazes > 0:
avg_test_loss = total_test_loss.item() / total_test_mazes.item()
avg_test_acc_step = total_test_correct_certain.item() / total_test_steps.item()
avg_test_acc_maze = total_test_mazes_solved.item() / total_test_mazes.item()
test_losses.append(avg_test_loss)
test_accuracies_most_certain.append(avg_test_acc_step)
test_accuracies_most_certain_permaze.append(avg_test_acc_maze)
print(f"Iter {bi} Test Metrics (Agg): Loss={avg_test_loss:.4f}, StepAcc={avg_test_acc_step:.4f}, MazeAcc={avg_test_acc_maze:.4f}\n")
# --- Plotting ---
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
# Plot Avg Step Accuracy
axacc_train.plot(iters, train_accuracies_most_certain, 'k-', alpha=0.7, label=f'Avg Step Acc ({train_accuracies_most_certain[-1]:.3f})')
axacc_test.plot(iters, test_accuracies_most_certain, 'k-', alpha=0.7, label=f'Avg Step Acc ({test_accuracies_most_certain[-1]:.3f})')
# Plot Full Maze Accuracy
axacc_train.plot(iters, train_accuracies_most_certain_permaze, 'r-', alpha=0.6, label=f'Full Maze Acc ({train_accuracies_most_certain_permaze[-1]:.3f})')
axacc_test.plot(iters, test_accuracies_most_certain_permaze, 'r-', alpha=0.6, label=f'Full Maze Acc ({test_accuracies_most_certain_permaze[-1]:.3f})')
axacc_train.set_title('Train Accuracy (Aggregated)')
axacc_test.set_title('Test Accuracy (Aggregated)')
axacc_train.legend(loc='lower right')
axacc_test.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
axacc_train.set_ylim([0, 1])
axacc_test.set_ylim([0, 1])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
# Loss Plot
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train (Agg): {train_losses[-1]:.4f}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test (Agg): {test_losses[-1]:.4f}')
axloss.legend(loc='upper right')
axloss.set_xlabel("Iteration")
axloss.set_ylabel("Loss")
axloss.set_xlim([0, args.training_iterations])
axloss.set_ylim(bottom=0)
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
# --- End Plotting ---
# --- Visualization (Rank 0, Conditional) ---
if is_main_process(rank) and args.model in ['ctm', 'lstm']:
# try:
model_module = model.module if isinstance(model, DDP) else model
# Use a consistent batch for viz if possible, or just next batch
inputs_viz, targets_viz = next(iter(testloader))
inputs_viz = inputs_viz.to(device)
targets_viz = targets_viz.to(device)
longest_index = (targets_viz!=4).sum(-1).argmax() # 4 assumed padding
pbar.set_description('Tracking (Rank 0): Viz Fwd Pass')
predictions_viz_raw, _, _, _, post_activations_viz, attention_tracking_viz = model_module(inputs_viz, track=True)
predictions_viz = predictions_viz_raw.reshape(predictions_viz_raw.size(0), -1, 5, predictions_viz_raw.size(-1))
att_shape = (model.module.kv_features.shape[2], model.module.kv_features.shape[3])
attention_tracking_viz = attention_tracking_viz.reshape(
attention_tracking_viz.shape[0],
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
pbar.set_description('Tracking (Rank 0): Dynamics Plot')
plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)
pbar.set_description('Tracking (Rank 0): Maze GIF')
if attention_tracking_viz is not None:
make_maze_gif((inputs_viz[longest_index].detach().cpu().numpy()+1)/2,
predictions_viz[longest_index].detach().cpu().numpy(),
targets_viz[longest_index].detach().cpu().numpy(),
attention_tracking_viz[:, longest_index],
args.log_dir)
# else:
# print("Skipping maze GIF due to attention shape issue.")
# except Exception as e_viz:
# print(f"Rank 0 visualization failed: {e_viz}")
# --- End Visualization ---
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if world_size > 1: dist.barrier()
model.train()
# --- End Evaluation Block ---
if hasattr(train_sampler, 'set_epoch'): # Check if sampler has set_epoch
train_sampler.set_epoch(bi)
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# Defaults for logging
loss = torch.tensor(0.0, device=device) # Need loss defined for logging scope
accuracy_finegrained = 0.0
where_most_certain_val = -1.0
where_most_certain_std = 0.0
where_most_certain_min = -1
where_most_certain_max = -1
upto_where_mean = -1.0
upto_where_std = 0.0
upto_where_min = -1
upto_where_max = -1
with torch.autocast(device_type="cuda" if device.type == 'cuda' else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile: torch.compiler.cudagraph_mark_step_begin()
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=True)
with torch.no_grad(): # Calculate local accuracy for logging
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False) # where = -1
with torch.no_grad():
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5) # B,S,C
loss, where_most_certain, upto_where = maze_loss(predictions.unsqueeze(-1), None, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False) # where = -1
with torch.no_grad():
accuracy_finegrained = (predictions.argmax(2) == targets).float().mean().item()
# Extract stats from loss outputs
if torch.is_tensor(where_most_certain):
where_most_certain_val = where_most_certain.float().mean().item()
where_most_certain_std = where_most_certain.float().std().item()
where_most_certain_min = where_most_certain.min().item()
where_most_certain_max = where_most_certain.max().item()
elif isinstance(where_most_certain, int):
where_most_certain_val = float(where_most_certain); where_most_certain_min = where_most_certain; where_most_certain_max = where_most_certain
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0:
upto_where_mean = np.mean(upto_where); upto_where_std = np.std(upto_where); upto_where_min = np.min(upto_where); upto_where_max = np.max(upto_where)
# Backprop / Step
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
# --- Aggregation and Logging (Rank 0) ---
loss_log = loss.detach()
if world_size > 1: dist.all_reduce(loss_log, op=dist.ReduceOp.AVG)
if is_main_process(rank):
pbar_desc = f'Loss(avg)={loss_log.item():.3f} Acc(loc)={accuracy_finegrained:.3f} LR={current_lr:.6f}'
if args.model in ['ctm', 'lstm'] or torch.is_tensor(where_most_certain):
pbar_desc += f' Cert={where_most_certain_val:.2f}'#+-{where_most_certain_std:.2f}' # Removed std for brevity
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0:
pbar_desc += f' Path={upto_where_mean:.1f}'#+-{upto_where_std:.1f}'
pbar.set_description(f'{args.model.upper()} {pbar_desc}')
# --- End Aggregation and Logging ---
# --- Checkpointing (Rank 0) ---
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter and is_main_process(rank):
pbar.set_description('Rank 0: Saving checkpoint...')
save_path = f'{args.log_dir}/checkpoint.pt'
model_state_to_save = model.module.state_dict() if isinstance(model, DDP) else model.state_dict()
checkpoint_data = {
'model_state_dict': model_state_to_save,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'iteration': bi,
'train_losses': train_losses,
'test_losses': test_losses,
'train_accuracies': train_accuracies, # Saving simplified scalar list
'test_accuracies': test_accuracies, # Saving simplified scalar list
'train_accuracies_most_certain': train_accuracies_most_certain,
'test_accuracies_most_certain': test_accuracies_most_certain,
'train_accuracies_most_certain_permaze': train_accuracies_most_certain_permaze,
'test_accuracies_most_certain_permaze': test_accuracies_most_certain_permaze,
'iters': iters,
'args': args,
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
}
torch.save(checkpoint_data, save_path)
# --- End Checkpointing ---
if world_size > 1: dist.barrier()
if is_main_process(rank):
pbar.update(1)
# --- End Training Loop ---
if is_main_process(rank):
pbar.close()
cleanup_ddp()