LukeDarlow's picture
MPS support updates
e8dc0c3
raw
history blame
23.7 kB
import argparse
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
from tqdm.auto import tqdm
from data.custom_datasets import SortDataset
from models.ctm_sort import ContinuousThoughtMachineSORT
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import sort_loss
from tasks.sort.utils import compute_ctc_accuracy, decode_predictions
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
import torchvision
torchvision.disable_beta_transforms_warning()
from autoclip.torch import QuantileClip
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Architecture
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input.')
parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet.')
parser.add_argument('--heads', type=int, default=4, help='Number of attention heads.')
parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch.')
parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch.')
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset.')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch.')
parser.add_argument('--iterations', type=int, default=50, help='Number of internal ticks.')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS.')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True,
help='Use deep memory.')
parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model.')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False,
help='Apply normalization in NLMs.')
parser.add_argument('--positional_embedding_type', type=str, default='none',
help='Type of positional embedding.', choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# Training
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True,
help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'],
help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+',
help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile the synapses, backbone, and nlms.')
# Logging and Saving
parser.add_argument('--log_dir', type=str, default='logs/scratch',
help='Directory for logging.')
parser.add_argument('--N_to_sort', type=int, default=30, help='N numbers to sort.')
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False,
help='Reload only the model from disk?')
# Tracking
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=2, help='How many minibatches to approx metrics. Set to -1 for full eval')
# Device
parser.add_argument('--device', type=int, nargs='+', default=[-1],
help='List of GPU(s) to use. Set to -1 to use CPU.')
args = parser.parse_args()
return args
if __name__=='__main__':
# Hosuekeeping
args = parse_args()
# Change the following for sorting
args.backbone_type = 'none'
set_seed(args.seed, False)
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
# Data
train_data = SortDataset(args.N_to_sort)
test_data = SortDataset(args.N_to_sort)
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=1)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1, drop_last=False)
prediction_reshaper = [-1] # Problem specific
args.out_dims = args.N_to_sort + 1
# For total reproducibility
# Python 3.x
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
# Configure device string (support MPS on macOS)
if args.device[0] != -1:
device = f'cuda:{args.device[0]}'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
print(f'Running model {args.model} on {device}')
# Build model
model = ContinuousThoughtMachineSORT(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.out_dims-1,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type='none',
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
model.train()
# For lazy modules so that we can get param count
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
model(pseudo_inputs)
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
# Optimizer and scheduler
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking (I like custom)
# Using batched estimates
start_iter = 0 # For reloading, keep track of this (pretty tqdm stuff needs it)
train_losses = []
test_losses = []
train_accuracies = [] # This will be per internal tick, not so simple
test_accuracies = []
train_accuracies_full_list = [] # This will be selected according to what is returned by loss function
test_accuracies_full_list = []
iters = []
# Now that everything is initliased, reload if desired
scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
if args.reload:
if os.path.isfile(f'{args.log_dir}/checkpoint.pt'):
print(f'Reloading from: {args.log_dir}/checkpoint.pt')
checkpoint = torch.load(f'{args.log_dir}/checkpoint.pt', map_location=device, weights_only=False)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
if not args.reload_model_only:
print('Reloading optimizer etc.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_iter = checkpoint['iteration']
train_losses = checkpoint['train_losses']
train_accuracies_full_list = checkpoint['train_accuracies_full_list']
train_accuracies = checkpoint['train_accuracies']
test_losses = checkpoint['test_losses']
test_accuracies_full_list = checkpoint['test_accuracies_full_list']
test_accuracies = checkpoint['test_accuracies']
iters = checkpoint['iters']
else:
print('Only relading model!')
if 'torch_rng_state' in checkpoint:
# Reset seeds, otherwise mid-way training can be obscure (particularly for imagenet)
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if args.do_compile:
print('Compiling...')
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
# Training
iterator = iter(trainloader) # Not training in epochs, but rather iterations. Need to reset this from time to time
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
for bi in range(start_iter, args.training_iterations):
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device)
targets = targets.to(device)
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile:
torch.compiler.cudagraph_mark_step_begin()
predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(predictions, targets)
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
accuracy = compute_ctc_accuracy(predictions, targets, predictions.shape[1]-1)
pbar.set_description(f'Sorting {args.N_to_sort} real numbers. Loss={loss.item():0.3f}. Accuracy={accuracy:0.3f}. LR={current_lr:0.6f}')
# Metrics tracking and plotting
if bi%args.track_every==0:# and bi != 0:
model.eval()
with torch.inference_mode():
inputs, targets = next(iter(testloader))
inputs = inputs.to(device)
targets = targets.to(device)
pbar.set_description('Tracking: Processing test data')
predictions, certainties, synchronisation, pre_activations, post_activations, _ = model(inputs, track=True)
pbar.set_description('Tracking: Neural dynamics')
plot_neural_dynamics(post_activations, 100, args.log_dir)
imgi = 0
##################################### TRAIN METRICS
all_predictions = []
all_targets = []
all_losses = []
iters.append(bi)
pbar.set_description('Tracking: Computing loss and accuracy for curves')
with torch.inference_mode():
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
these_predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(these_predictions, targets)
all_losses.append(loss.item())
all_targets.append(targets.detach().cpu().numpy())
decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)
all_predictions.append(decoded.detach().cpu().numpy())
if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
pbar_inner.set_description('Computing metrics for train')
pbar_inner.update(1)
all_predictions = np.concatenate(all_predictions)
all_targets = np.concatenate(all_targets)
train_accuracies.append((all_predictions==all_targets).mean())
train_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
train_losses.append(np.mean(all_losses))
##################################### TEST METRICS
all_predictions = []
all_targets = []
all_losses = []
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
these_predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(these_predictions, targets)
all_losses.append(loss.item())
all_targets.append(targets.detach().cpu().numpy())
decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)
all_predictions.append(decoded.detach().cpu().numpy())
if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
pbar_inner.set_description('Computing metrics for train')
pbar_inner.update(1)
all_predictions = np.concatenate(all_predictions)
all_targets = np.concatenate(all_targets)
test_accuracies.append((all_predictions==all_targets).mean())
test_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
test_losses.append(np.mean(all_losses))
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
cm = sns.color_palette("viridis", as_cmap=True)
axacc_train.plot(iters, train_accuracies, 'b-', alpha=0.7, label='Find grained')
axacc_train.plot(iters, train_accuracies_full_list, 'k--', alpha=0.7, label='Full list')
axacc_test.plot(iters, test_accuracies, 'b-', alpha=0.7, label='Fine grained')
axacc_test.plot(iters, test_accuracies_full_list, 'k--', alpha=0.7, label='Full list')
axacc_train.set_title('Train')
axacc_test.set_title('Test')
axacc_train.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]}')
axloss.legend(loc='upper right')
axloss.set_xlim([0, args.training_iterations])
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
model.train()
# Save model
if (bi%args.save_every==0 or bi==args.training_iterations-1) and bi != start_iter:
torch.save(
{
'model_state_dict':model.state_dict(),
'optimizer_state_dict':optimizer.state_dict(),
'scheduler_state_dict':scheduler.state_dict(),
'scaler_state_dict':scaler.state_dict(),
'iteration':bi,
'train_accuracies_full_list':train_accuracies_full_list,
'train_accuracies':train_accuracies,
'test_accuracies_full_list':test_accuracies_full_list,
'test_accuracies':test_accuracies,
'train_losses':train_losses,
'test_losses':test_losses,
'iters':iters,
'args':args,
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
} , f'{args.log_dir}/checkpoint.pt')
pbar.update(1)