LukeDarlow's picture
Welcome to the CTM. This is the first commit of the public repo. Enjoy!
68b32f4
raw
history blame
11 kB
import pytest
import torch
from models.ctm import ContinuousThoughtMachine
from models.ctm_qamnist import ContinuousThoughtMachineQAMNIST
from utils.samplers import QAMNISTSampler
from tasks.qamnist.utils import get_dataset
from tests.test_data import *
from utils.housekeeping import set_seed
from tasks.rl.train import Agent
from types import SimpleNamespace
# --- Housekeeping ---
@pytest.fixture
def device():
return torch.device("cpu")
@pytest.fixture
def seed():
return 42
@pytest.fixture(autouse=True)
def auto_set_seed(seed):
set_seed(seed)
# --- Golden Test Fixtures ---
# ------ Parity ------
@pytest.fixture
def golden_test_params_parity(parity_params):
parity_length = 4
parity_small_params = parity_params.copy()
parity_small_params["out_dims"] = 2 * parity_length
parity_small_params["prediction_reshaper"] = [parity_length, 2]
return parity_small_params
@pytest.fixture
def golden_test_model_parity(golden_test_params_parity, device):
return ContinuousThoughtMachine(**golden_test_params_parity).to(device)
@pytest.fixture
def golden_test_input_parity(device):
return GOLDEN_TEST_INPUT_PARITY.to(device)
@pytest.fixture
def golden_test_expected_predictions_parity(device):
return GOLDEN_TEST_EXPECTED_PREDICTIONS_PARITY.to(device)
@pytest.fixture
def golden_test_expected_certainties_parity(device):
return GOLDEN_TEST_EXPECTED_CERTAINTIES_PARITY.to(device)
@pytest.fixture
def golden_test_expected_synchronization_out_tracking_parity():
return GOLDEN_TEST_EXPECTED_SYNCH_OUT_TRACKING_PARITY
@pytest.fixture
def golden_test_expected_synchronization_action_tracking_parity():
return GOLDEN_TEST_EXPECTED_SYNCH_ACTION_TRACKING_PARITY
@pytest.fixture
def golden_test_expected_pre_activations_tracking_parity():
return GOLDEN_TEST_EXPECTED_PRE_ACTIVATIONS_TRACKING_PARITY
@pytest.fixture
def golden_test_expected_post_activations_tracking_parity():
return GOLDEN_TEST_EXPECTED_POST_ACTIVATIONS_TRACKING_PARITY
@pytest.fixture
def golden_test_expected_attentions_tracking_parity():
return GOLDEN_TEST_EXPECTED_ATTENTIONS_TRACKING_PARITY
# ------ QAMNIST ------
@pytest.fixture
def golden_test_params_qamnist(base_params):
params = base_params.copy()
params.pop("backbone_type")
params.pop("positional_embedding_type")
params["iterations_per_digit"] = 1
params["iterations_per_question_part"] = 1
params["iterations_for_answering"] = 1
return params
@pytest.fixture
def golden_test_model_qamnist(golden_test_params_qamnist, device):
return ContinuousThoughtMachineQAMNIST(**golden_test_params_qamnist).to(device)
@pytest.fixture
def golden_test_input_qamnist(device):
q_num_images = 2
q_num_images_delta = 0
q_num_repeats_per_input = 1
q_num_operations = 2
q_num_operations_delta = 0
batch_size = 1
train_data, _, _, _, _ = get_dataset(
q_num_images=q_num_images,
q_num_images_delta=q_num_images_delta,
q_num_repeats_per_input=q_num_repeats_per_input,
q_num_operations=q_num_operations,
q_num_operations_delta=q_num_operations_delta,
)
sampler = QAMNISTSampler(train_data, batch_size=batch_size)
loader = torch.utils.data.DataLoader(train_data, batch_sampler=sampler, num_workers=0)
inputs, z, _, _ = next(iter(loader))
inputs = inputs.to(device)
z = torch.stack(z, 1).to(device)
return inputs, z
@pytest.fixture
def golden_test_expected_predictions_qamnist(device):
return GOLDEN_TEST_EXPECTED_PREDICTIONS_QAMNIST.to(device)
@pytest.fixture
def golden_test_expected_certainties_qamnist(device):
return GOLDEN_TEST_EXPECTED_CERTAINTIES_QAMNIST.to(device)
@pytest.fixture
def golden_test_expected_synchronization_out_tracking_qamnist(device):
return GOLDEN_TEST_EXPECTED_SYNCH_OUT_TRACKING_QAMNIST.to(device)
@pytest.fixture
def golden_test_expected_synchronization_action_tracking_qamnist():
return GOLDEN_TEST_EXPECTED_SYNCH_ACTION_TRACKING_QAMNIST
@pytest.fixture
def golden_test_expected_pre_activations_tracking_qamnist():
return GOLDEN_TEST_EXPECTED_PRE_ACTIVATIONS_TRACKING_QAMNIST
@pytest.fixture
def golden_test_expected_post_activations_tracking_qamnist():
return GOLDEN_TEST_EXPECTED_POST_ACTIVATIONS_TRACKING_QAMNIST
@pytest.fixture
def golden_test_expected_attentions_tracking_qamnist():
return GOLDEN_TEST_EXPECTED_ATTENTIONS_TRACKING_QAMNIST
@pytest.fixture
def golden_test_expected_embeddings_tracking_qamnist():
return GOLDEN_TEST_EXPECTED_EMBEDDINGS_TRACKING_QAMNIST
# ------ RL (CartPole) ------
@pytest.fixture
def golden_test_params_rl(base_params):
params = base_params.copy()
params.pop("heads")
params.pop("n_synch_action")
params.pop("out_dims")
params.pop("n_random_pairing_self")
params.pop("positional_embedding_type")
return params
@pytest.fixture
def golden_test_model_rl(golden_test_params_rl, device):
args = SimpleNamespace(
env_id="CartPole-v1",
model_type="ctm",
continuous_state_trace=True,
iterations=golden_test_params_rl['iterations'],
d_model=golden_test_params_rl['d_model'],
d_input=golden_test_params_rl['d_input'],
n_synch_out=golden_test_params_rl['n_synch_out'],
synapse_depth=golden_test_params_rl['synapse_depth'],
memory_length=golden_test_params_rl['memory_length'],
deep_memory=golden_test_params_rl['deep_nlms'],
memory_hidden_dims=golden_test_params_rl['memory_hidden_dims'],
do_normalisation=golden_test_params_rl['do_layernorm_nlm'],
dropout=golden_test_params_rl.get('dropout', 0),
neuron_select_type=golden_test_params_rl.get('neuron_select_type', 'first-last'),
)
size_action_space = 2
model = Agent(size_action_space, args, device).to(device)
return model
@pytest.fixture()
def environment_to_test():
return "cartpole"
@pytest.fixture
def golden_test_inputs_rl(environment_to_test):
if environment_to_test != "cartpole":
raise NotImplementedError("RL test only tests cartpole.")
observations = torch.tensor([[ 0.01, 0.02, 0.03, 0.04],], dtype=torch.float32)
return observations
@pytest.fixture
def golden_test_expected_initial_state_trace_rl(device):
return GOLDEN_TEST_EXPECTED_INITIAL_STATE_TRACE_RL.to(device)
@pytest.fixture
def golden_test_expected_initial_activated_state_trace_rl(device):
return GOLDEN_TEST_EXPECTED_INITIAL_ACTIVATED_STATE_TRACE_RL.to(device)
@pytest.fixture
def golden_test_expected_action_rl(device):
return GOLDEN_TEST_EXPECTED_ACTION_RL.to(device)
@pytest.fixture
def golden_test_expected_action_log_prob_rl(device):
return GOLDEN_TEST_EXPECTED_ACTION_LOG_PROB_RL.to(device)
@pytest.fixture
def golden_test_expected_action_entropy_rl(device):
return GOLDEN_TEST_EXPECTED_ENTROPY_RL.to(device)
@pytest.fixture
def golden_test_expected_value_rl(device):
return GOLDEN_TEST_EXPECTED_VALUE_RL.to(device)
@pytest.fixture
def golden_test_expected_state_trace_rl(device):
return GOLDEN_TEST_EXPECTED_STATE_TRACE_RL.to(device)
@pytest.fixture
def golden_test_expected_activated_state_trace_rl(device):
return GOLDEN_TEST_EXPECTED_ACTIVATED_STATE_TRACE_RL.to(device)
@pytest.fixture
def golden_test_expected_action_logits_rl(device):
return GOLDEN_TEST_EXPECTED_ACTION_LOGITS_RL.to(device)
@pytest.fixture
def golden_test_expected_action_probs_rl(device):
return GOLDEN_TEST_EXPECTED_ACTION_PROBS_RL.to(device)
@pytest.fixture
def golden_test_expected_pre_activations_tracking_rl():
return GOLDEN_TEST_EXPECTED_PRE_ACTIVATIONS_TRACKING_RL
@pytest.fixture
def golden_test_expected_post_activations_tracking_rl():
return GOLDEN_TEST_EXPECTED_POST_ACTIVATIONS_TRACKING_RL
@pytest.fixture
def golden_test_expected_synch_out_tracking_rl():
return GOLDEN_TEST_SYNCH_OUT_TRACKING_RL
# --- Parity Fixtures ---
@pytest.fixture
def base_params():
return dict(
iterations=10,
d_model=32,
d_input=4,
heads=2,
n_synch_out=3,
n_synch_action=3,
synapse_depth=1,
memory_length=5,
deep_nlms=True,
memory_hidden_dims=2,
do_layernorm_nlm=False,
backbone_type="none",
positional_embedding_type="none",
out_dims=10,
prediction_reshaper=[-1],
dropout=0.0,
neuron_select_type="first-last",
n_random_pairing_self=0,
)
@pytest.fixture
def parity_input(device):
batch_size = 4
parity_length = 64
return torch.randint(0, 2, (batch_size, parity_length), dtype=torch.float32, device=device) * 2 - 1
@pytest.fixture
def ctm_factory():
def _create_model(base_config, **overrides):
config = base_config.copy()
config.update(overrides)
return ContinuousThoughtMachine(**config)
return _create_model
@pytest.fixture
def parity_params(base_params):
parity_length = 64
parity_params = base_params.copy()
parity_params["backbone_type"] = "parity_backbone"
parity_params["positional_embedding_type"] = "custom-rotational-1d"
parity_params["out_dims"] = 2 * parity_length
parity_params["prediction_reshaper"] = [parity_length, 2]
return parity_params
@pytest.fixture
def parity_ctm_model(parity_params, device):
return ContinuousThoughtMachine(**parity_params).to(device)
# --- QAMNIST Fixtures ---
@pytest.fixture
def qamnist_params():
return dict(
iterations=1,
d_model=1024,
d_input=64,
heads=4,
n_synch_out=32,
n_synch_action=32,
synapse_depth=1,
memory_length=10,
deep_nlms=True,
memory_hidden_dims=16,
do_layernorm_nlm=True,
out_dims=10,
prediction_reshaper=[-1],
dropout=0.0,
neuron_select_type="first-last",
iterations_per_digit=10,
iterations_per_question_part=10,
iterations_for_answering=10,
n_random_pairing_self=0,
)
@pytest.fixture
def qamnist_input(device):
q_num_images = 3
q_num_images_delta = 2
q_num_repeats_per_input = 10
q_num_operations = 3
q_num_operations_delta = 2
batch_size = 4
train_data, _, _, _, _ = get_dataset(
q_num_images=q_num_images,
q_num_images_delta=q_num_images_delta,
q_num_repeats_per_input=q_num_repeats_per_input,
q_num_operations=q_num_operations,
q_num_operations_delta=q_num_operations_delta,
)
sampler = QAMNISTSampler(train_data, batch_size=batch_size)
loader = torch.utils.data.DataLoader(train_data, batch_sampler=sampler, num_workers=0)
inputs, z, _, _ = next(iter(loader))
inputs = inputs.to(device)
z = torch.stack(z, 1).to(device)
return inputs, z
@pytest.fixture
def qamnist_model_factory(qamnist_params):
def _create_model(neuron_select_type):
return ContinuousThoughtMachineQAMNIST(
**{**qamnist_params, "neuron_select_type": neuron_select_type}
)
return _create_model