LukeDarlow's picture
Welcome to the CTM. This is the first commit of the public repo. Enjoy!
68b32f4
raw
history blame
14.5 kB
import torch
import pytest
import itertools
from models.constants import VALID_NEURON_SELECT_TYPES, VALID_BACKBONE_TYPES, VALID_POSITIONAL_EMBEDDING_TYPES
import numpy as np
def rep_size(neuron_select_type: str, n_synch: int) -> int:
return n_synch if neuron_select_type == "random-pairing" else n_synch * (n_synch + 1) // 2
def rep_size(neuron_select_type: str, n_synch: int) -> int:
return n_synch if neuron_select_type == "random-pairing" else n_synch * (n_synch + 1) // 2
def grab_synch_tensors(model, s_type: str):
if s_type == "out":
return (
model.out_neuron_indices_left,
model.out_neuron_indices_right,
model.decay_params_out,
)
if s_type == "action":
return (
model.action_neuron_indices_left,
model.action_neuron_indices_right,
model.decay_params_action,
)
raise ValueError(s_type)
# --- Golden Tests ---
def test_golden_parity(golden_test_model_parity, golden_test_input_parity, golden_test_expected_predictions_parity, golden_test_expected_certainties_parity, golden_test_expected_synchronization_out_tracking_parity, golden_test_expected_synchronization_action_tracking_parity, golden_test_expected_pre_activations_tracking_parity, golden_test_expected_post_activations_tracking_parity, golden_test_expected_attentions_tracking_parity):
"""Golden test the parity CTM model."""
atol = 1e-5
atol_attn = 1e-3
golden_test_model_parity.eval()
predictions, certainties, (synch_out_tracking, synch_action_tracking), pre_activations_tracking, post_activations_tracking, attention_tracking = golden_test_model_parity(golden_test_input_parity, track=True)
assert torch.isclose(predictions, golden_test_expected_predictions_parity, atol=atol).all(), f"Predictions do not match expected values."
assert torch.isclose(certainties, golden_test_expected_certainties_parity, atol=atol).all(), f"Certainties do not match expected values."
assert np.isclose(synch_out_tracking, golden_test_expected_synchronization_out_tracking_parity, atol=atol).all(), f"Synch Out do not match expected values."
assert np.isclose(synch_action_tracking, golden_test_expected_synchronization_action_tracking_parity, atol=atol).all(), f"Synch Action do not match expected values."
assert np.isclose(pre_activations_tracking, golden_test_expected_pre_activations_tracking_parity, atol=atol).all(), f"Pre-activations do not match expected values."
assert np.isclose(post_activations_tracking, golden_test_expected_post_activations_tracking_parity, atol=atol).all(), f"Post-activations do not match expected values."
assert np.isclose(attention_tracking, golden_test_expected_attentions_tracking_parity, atol=atol_attn).all(), f"Attention do not match expected values."
pass
def test_golden_qamnist(golden_test_model_qamnist, golden_test_input_qamnist, golden_test_expected_predictions_qamnist, golden_test_expected_certainties_qamnist, golden_test_expected_synchronization_out_tracking_qamnist, golden_test_expected_pre_activations_tracking_qamnist, golden_test_expected_post_activations_tracking_qamnist, golden_test_expected_attentions_tracking_qamnist, golden_test_expected_embeddings_tracking_qamnist):
"""Golden test the QAMNIST CTM model."""
atol = 1e-4
atol_attn = 5e-3
golden_test_model_qamnist.eval()
x, z = golden_test_input_qamnist
predictions, certainties, synch_out_tracking, pre_activations_tracking, post_activations_tracking, attention_tracking, embedding_tracking = golden_test_model_qamnist(x, z=z, track=True)
assert torch.isclose(predictions, golden_test_expected_predictions_qamnist, atol=atol).all(), f"Predictions do not match expected values."
assert torch.isclose(certainties, golden_test_expected_certainties_qamnist, atol=atol).all(), f"Certainties do not match expected values."
assert torch.isclose(synch_out_tracking, golden_test_expected_synchronization_out_tracking_qamnist[-1], atol=atol).all(), f"Synch Out do not match expected values."
assert np.isclose(pre_activations_tracking, golden_test_expected_pre_activations_tracking_qamnist, atol=atol).all(), f"Pre-activations do not match expected values."
assert np.isclose(post_activations_tracking, golden_test_expected_post_activations_tracking_qamnist, atol=atol).all(), f"Post-activations do not match expected values."
assert np.isclose(attention_tracking, golden_test_expected_attentions_tracking_qamnist, atol=atol_attn).all(), f"Attention do not match expected values."
assert np.isclose(embedding_tracking, golden_test_expected_embeddings_tracking_qamnist, atol=atol).all(), f"Embeddings do not match expected values."
pass
def test_golden_rl(golden_test_model_rl, golden_test_inputs_rl, golden_test_expected_initial_state_trace_rl, golden_test_expected_initial_activated_state_trace_rl, golden_test_expected_action_rl, golden_test_expected_action_log_prob_rl, golden_test_expected_action_entropy_rl, golden_test_expected_value_rl, golden_test_expected_state_trace_rl, golden_test_expected_activated_state_trace_rl, golden_test_expected_action_logits_rl, golden_test_expected_action_probs_rl, golden_test_expected_pre_activations_tracking_rl, golden_test_expected_post_activations_tracking_rl, golden_test_expected_synch_out_tracking_rl):
atol = 1e-5
golden_test_model_rl.eval()
initial_state_trace, initial_activated_state_trace = golden_test_model_rl.get_initial_state(num_envs=1)
dones = torch.zeros(1).to(initial_state_trace.device)
assert torch.isclose(initial_state_trace, golden_test_expected_initial_state_trace_rl, atol=atol).all(), f"Initial hidden states of the CTM does not match expected values."
assert torch.isclose(initial_activated_state_trace, golden_test_expected_initial_activated_state_trace_rl, atol=atol).all(), f"Initial hidden states of the CTM does not match expected values."
_, action_log_probs, entropy, value, (state_trace, activated_state_trace), tracking_data, action_logits, action_probs = golden_test_model_rl.get_action_and_value(golden_test_inputs_rl, (initial_state_trace, initial_activated_state_trace), dones, track=True)
pre_activations = tracking_data["pre_activations"]
post_activations = tracking_data["post_activations"]
synchronization = tracking_data["synchronisation"]
assert torch.isclose(action_log_probs, golden_test_expected_action_log_prob_rl, atol=atol).all(), f"Action log probs do not match expected values."
assert torch.isclose(entropy, golden_test_expected_action_entropy_rl, atol=atol).all(), f"Entropy does not match expected values."
assert torch.isclose(value, golden_test_expected_value_rl, atol=atol).all(), f"Value does not match expected values."
assert torch.isclose(state_trace, golden_test_expected_state_trace_rl, atol=atol).all(), f"State trace does not match expected values."
assert torch.isclose(activated_state_trace, golden_test_expected_activated_state_trace_rl, atol=atol).all(), f"Activated state trace does not match expected values."
assert np.isclose(pre_activations, golden_test_expected_pre_activations_tracking_rl, atol=atol).all(), f"Pre-activations do not match expected values."
assert np.isclose(post_activations, golden_test_expected_post_activations_tracking_rl, atol=atol).all(), f"Post-activations do not match expected values."
assert np.isclose(synchronization, golden_test_expected_synch_out_tracking_rl, atol=atol).all(), f"Synchronisation do not match expected values."
assert torch.isclose(action_logits, golden_test_expected_action_logits_rl, atol=atol).all(), f"Action logits do not match expected values."
assert torch.isclose(action_probs, golden_test_expected_action_probs_rl, atol=atol).all(), f"Action probs do not match expected values."
pass
# --- General CTM Tests ---
@pytest.mark.parametrize("synch_type", ["out", "action"])
@pytest.mark.parametrize("neuron_select_type", ["first-last", "random", "random-pairing"])
def test_set_synchronisation_parameters(ctm_factory, base_params, device, synch_type, neuron_select_type):
np.random.seed(0)
n_synch = 8
num_random_pairing_self = 2
model = ctm_factory(
base_params,
d_model=64,
n_synch_out=n_synch,
n_synch_action=n_synch,
neuron_select_type=neuron_select_type,
n_random_pairing_self=num_random_pairing_self,
).to(device)
left, right, decay = grab_synch_tensors(model, synch_type)
# Check shapes
assert left.dtype == right.dtype == torch.long
assert left.shape == right.shape == (n_synch,)
assert decay.shape == (rep_size(neuron_select_type, n_synch),)
# Check equal number of neurons on left and right
assert left.size(0) == right.size(0) == n_synch
# Check that the left and right indices are within the model's d_model
assert torch.all(left < model.d_model) and torch.all(right < model.d_model)
# Test neuron pairing selection
if neuron_select_type == "first-last":
if synch_type == "out":
exp = torch.arange(0, n_synch, device=device)
else:
exp = torch.arange(model.d_model - n_synch, model.d_model, device=device)
assert torch.equal(left, exp) and torch.equal(right, exp)
elif neuron_select_type == "random":
pass
elif neuron_select_type == "random-pairing":
assert torch.equal(right[:num_random_pairing_self], left[:num_random_pairing_self])
# ------ Neuron Select Type Test ---
@pytest.mark.parametrize("neuron_select_type", VALID_NEURON_SELECT_TYPES)
def test_valid_neuron_select_type(ctm_factory, base_params, neuron_select_type):
model = ctm_factory(base_params, neuron_select_type=neuron_select_type)
assert model is not None
def test_none_neuron_select_type(ctm_factory, base_params):
with pytest.raises(Exception):
ctm_factory(base_params, neuron_select_type="none")
def test_invalid_neuron_select_type(ctm_factory, base_params):
with pytest.raises(Exception):
ctm_factory(base_params, neuron_select_type="invalid-option")
# ------ Backbone and Positional Embedding Type Test ---
@pytest.mark.parametrize("backbone_type, positional_embedding_type", list(itertools.product(VALID_BACKBONE_TYPES, VALID_POSITIONAL_EMBEDDING_TYPES)))
def test_valid_backbone_and_valid_positional_embedding(ctm_factory, base_params, backbone_type, positional_embedding_type):
model = ctm_factory(
base_params,
backbone_type=backbone_type,
positional_embedding_type=positional_embedding_type,
)
assert model is not None
def test_none_backbone_with_none_positional_embeddings(ctm_factory, base_params):
model = ctm_factory(
base_params,
backbone_type="none",
positional_embedding_type="none",
)
assert model is not None
@pytest.mark.parametrize("positional_embedding_type", VALID_POSITIONAL_EMBEDDING_TYPES)
def test_none_backbone_with_valid_positional_embeddings(ctm_factory, base_params, positional_embedding_type):
with pytest.raises(Exception):
ctm_factory(
base_params,
backbone_type="none",
positional_embedding_type=positional_embedding_type,
)
@pytest.mark.parametrize("backbone_type", VALID_BACKBONE_TYPES)
def test_valid_backbone_with_none_positional_embeddings(ctm_factory, base_params, backbone_type):
model = ctm_factory(
base_params,
backbone_type=backbone_type,
positional_embedding_type="none",
)
assert model is not None
# --- Parity Tests ---
def test_parity_prediction_shape(parity_ctm_model, parity_params, parity_input):
predictions, _, _ = parity_ctm_model(parity_input)
batch_size, parity_length = parity_input.shape
expected_shape = (batch_size, parity_length * 2, parity_params["iterations"])
assert predictions.shape == expected_shape
def test_parity_certainty_shape(parity_ctm_model, parity_params, parity_input):
_, certainties, _ = parity_ctm_model(parity_input)
batch_size = parity_input.shape[0]
expected_shape = (batch_size, 2, parity_params["iterations"])
assert certainties.shape == expected_shape
def test_parity_nans_in_predictions(parity_ctm_model, parity_input):
predictions, _, _ = parity_ctm_model(parity_input)
assert not torch.isnan(predictions).any()
# --- QAMNIST Tests ---
def test_qamnist_prediction_shape(qamnist_model_factory, qamnist_params, qamnist_input, device):
model = qamnist_model_factory("first-last").to(device)
inputs, z = qamnist_input
predictions, _, _ = model(inputs, z)
B = inputs.shape[0]
out_dims = qamnist_params["out_dims"]
T = inputs.shape[1] + z.shape[1] + qamnist_params["iterations_for_answering"]
expected_shape = (B, out_dims, T)
assert predictions.shape == expected_shape, f"Expected {expected_shape}, got {predictions.shape}"
def test_qamnist_certainty_shape(qamnist_model_factory, qamnist_params, qamnist_input, device):
model = qamnist_model_factory("first-last").to(device)
inputs, z = qamnist_input
_, certainties, _ = model(inputs, z)
B = inputs.shape[0]
T = inputs.shape[1] + z.shape[1] + qamnist_params["iterations_for_answering"]
expected_shape = (B, 2, T)
assert certainties.shape == expected_shape, f"Expected {expected_shape}, got {certainties.shape}"
def test_qamnist_nans_in_predictions(qamnist_model_factory, qamnist_input, device):
model = qamnist_model_factory("first-last").to(device)
inputs, z = qamnist_input
predictions, _, _ = model(inputs, z)
assert not torch.isnan(predictions).any(), "Predictions contain NaNs"
@pytest.mark.parametrize("neuron_select_type", ["first-last", "random", "random-pairing"])
def test_qamnist_synchronisation_shape(qamnist_model_factory, qamnist_params, qamnist_input, neuron_select_type, device):
model = qamnist_model_factory(neuron_select_type).to(device)
inputs, z = qamnist_input
_, _, synchronisation = model(inputs, z)
batch_size = inputs.shape[0]
n_synch_out = qamnist_params["n_synch_out"]
if neuron_select_type in ("first-last", "random"):
expected_size = (n_synch_out * (n_synch_out + 1)) // 2
elif neuron_select_type == "random-pairing":
expected_size = n_synch_out
assert synchronisation.shape == (batch_size, expected_size), \
f"Expected {(batch_size, expected_size)}, got {synchronisation.shape}"